MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9a Structured version   Visualization version   GIF version

Theorem tfrlem9a 8016
Description: Lemma for transfinite recursion. Without using ax-rep 5182, show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9a (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9a
Dummy variables 𝑔 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem7 8013 . . . 4 Fun recs(𝐹)
3 funfvop 6814 . . . 4 ((Fun recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
42, 3mpan 688 . . 3 (𝐵 ∈ dom recs(𝐹) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
51recsfval 8011 . . . . 5 recs(𝐹) = 𝐴
65eleq2i 2904 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴)
7 eluni 4834 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
86, 7bitri 277 . . 3 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
94, 8sylib 220 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
10 simprr 771 . . . 4 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → 𝑔𝐴)
11 vex 3497 . . . . 5 𝑔 ∈ V
121, 11tfrlem3a 8007 . . . 4 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
1310, 12sylib 220 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
142a1i 11 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹))
15 simplrr 776 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔𝐴)
16 elssuni 4860 . . . . . . . . . 10 (𝑔𝐴𝑔 𝐴)
1715, 16syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 𝐴)
1817, 5sseqtrrdi 4017 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹))
19 fndm 6449 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
2019ad2antll 727 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧)
21 simprl 769 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On)
2220, 21eqeltrd 2913 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On)
23 eloni 6195 . . . . . . . . . 10 (dom 𝑔 ∈ On → Ord dom 𝑔)
2422, 23syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔)
25 simpll 765 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹))
26 fvexd 6679 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V)
27 simplrl 775 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
28 df-br 5059 . . . . . . . . . . 11 (𝐵𝑔(recs(𝐹)‘𝐵) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
2927, 28sylibr 236 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵))
30 breldmg 5772 . . . . . . . . . 10 ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔)
3125, 26, 29, 30syl3anc 1367 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔)
32 ordelss 6201 . . . . . . . . 9 ((Ord dom 𝑔𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔)
3324, 31, 32syl2anc 586 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔)
34 fun2ssres 6393 . . . . . . . 8 ((Fun recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3514, 18, 33, 34syl3anc 1367 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3611resex 5893 . . . . . . . 8 (𝑔𝐵) ∈ V
3736a1i 11 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔𝐵) ∈ V)
3835, 37eqeltrd 2913 . . . . . 6 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V)
3938expr 459 . . . . 5 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V))
4039adantrd 494 . . . 4 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4140rexlimdva 3284 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4213, 41mpd 15 . 2 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V)
439, 42exlimddv 1932 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  wss 3935  cop 4566   cuni 4831   class class class wbr 5058  dom cdm 5549  cres 5551  Ord word 6184  Oncon0 6185  Fun wfun 6343   Fn wfn 6344  cfv 6349  recscrecs 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-wrecs 7941  df-recs 8002
This theorem is referenced by:  tfrlem15  8022  tfrlem16  8023  rdgseg  8052
  Copyright terms: Public domain W3C validator