MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1 26363
Description: Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Base‘𝐺)
tgbtwnconn1.i 𝐼 = (Itv‘𝐺)
tgbtwnconn1.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn1.a (𝜑𝐴𝑃)
tgbtwnconn1.b (𝜑𝐵𝑃)
tgbtwnconn1.c (𝜑𝐶𝑃)
tgbtwnconn1.d (𝜑𝐷𝑃)
tgbtwnconn1.1 (𝜑𝐴𝐵)
tgbtwnconn1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))

Proof of Theorem tgbtwnconn1
Dummy variables 𝑒 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . . . . 8 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
21simpld 497 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝐴𝐼𝑒))
32adantr 483 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝑒))
4 simpr 487 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐶 = 𝑒)
54oveq2d 7174 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐴𝐼𝐶) = (𝐴𝐼𝑒))
63, 5eleqtrrd 2918 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → 𝐷 ∈ (𝐴𝐼𝐶))
76olcd 870 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶 = 𝑒) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8 simprl 769 . . . . . . 7 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝐴𝐼𝑓))
98adantr 483 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝑓))
10 simpr 487 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐷 = 𝑓)
1110oveq2d 7174 . . . . . 6 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐴𝐼𝐷) = (𝐴𝐼𝑓))
129, 11eleqtrrd 2918 . . . . 5 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → 𝐶 ∈ (𝐴𝐼𝐷))
1312orcd 869 . . . 4 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐷 = 𝑓) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
14 df-ne 3019 . . . . . 6 (𝐶𝑒 ↔ ¬ 𝐶 = 𝑒)
15 tgbtwnconn1.p . . . . . . . . . . 11 𝑃 = (Base‘𝐺)
16 tgbtwnconn1.i . . . . . . . . . . 11 𝐼 = (Itv‘𝐺)
17 tgbtwnconn1.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ TarskiG)
1817ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐺 ∈ TarskiG)
1918ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐺 ∈ TarskiG)
20 tgbtwnconn1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑃)
2120ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐴𝑃)
2221ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝑃)
23 tgbtwnconn1.b . . . . . . . . . . . . 13 (𝜑𝐵𝑃)
2423ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐵𝑃)
2524ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵𝑃)
26 tgbtwnconn1.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
2726ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶𝑃)
2827ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑃)
29 tgbtwnconn1.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3029ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷𝑃)
3130ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷𝑃)
32 simp-11l 795 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝜑)
33 tgbtwnconn1.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
3432, 33syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐴𝐵)
35 tgbtwnconn1.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3632, 35syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐶))
37 tgbtwnconn1.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
3832, 37syl 17 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐵 ∈ (𝐴𝐼𝐷))
39 eqid 2823 . . . . . . . . . . 11 (dist‘𝐺) = (dist‘𝐺)
40 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑒𝑃)
4140ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒𝑃)
42 simplr 767 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝑓𝑃)
4342ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓𝑃)
44 simp-6r 786 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑃)
45 simp-4r 782 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑗𝑃)
462ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 ∈ (𝐴𝐼𝑒))
478ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶 ∈ (𝐴𝐼𝑓))
48 simp-5r 784 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
4948simpld 497 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑒 ∈ (𝐴𝐼))
50 simpllr 774 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
5150simpld 497 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑓 ∈ (𝐴𝐼𝑗))
521simprd 498 . . . . . . . . . . . . 13 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5352ad7antr 736 . . . . . . . . . . . 12 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))
5415, 39, 16, 19, 31, 41, 31, 28, 53tgcgrcomlr 26268 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)𝐷) = (𝐶(dist‘𝐺)𝐷))
55 simprr 771 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5655ad7antr 736 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))
5748simprd 498 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))
5850simprd 498 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))
59 simplr 767 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥𝑃)
60 simprl 769 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐶𝐼𝑒))
61 simprr 771 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝑥 ∈ (𝐷𝐼𝑓))
62 simp-7r 788 . . . . . . . . . . 11 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐶𝑒)
6315, 16, 19, 22, 25, 28, 31, 34, 36, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 54, 56, 57, 58, 59, 60, 61, 62tgbtwnconn1lem3 26362 . . . . . . . . . 10 ((((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓))) → 𝐷 = 𝑓)
6415, 39, 16, 18, 21, 27, 42, 8tgbtwncom 26276 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐶 ∈ (𝑓𝐼𝐴))
6515, 39, 16, 18, 21, 30, 40, 2tgbtwncom 26276 . . . . . . . . . . . 12 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → 𝐷 ∈ (𝑒𝐼𝐴))
6615, 39, 16, 18, 42, 40, 21, 27, 30, 64, 65axtgpasch 26255 . . . . . . . . . . 11 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6766ad5antr 732 . . . . . . . . . 10 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝑒) ∧ 𝑥 ∈ (𝐷𝐼𝑓)))
6863, 67r19.29a 3291 . . . . . . . . 9 ((((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) ∧ 𝑗𝑃) ∧ (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷))) → 𝐷 = 𝑓)
6915, 39, 16, 18, 21, 42, 24, 30axtgsegcon 26252 . . . . . . . . . 10 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7069ad3antrrr 728 . . . . . . . . 9 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → ∃𝑗𝑃 (𝑓 ∈ (𝐴𝐼𝑗) ∧ (𝑓(dist‘𝐺)𝑗) = (𝐵(dist‘𝐺)𝐷)))
7168, 70r19.29a 3291 . . . . . . . 8 ((((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) ∧ 𝑃) ∧ (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶))) → 𝐷 = 𝑓)
7215, 39, 16, 18, 21, 40, 24, 27axtgsegcon 26252 . . . . . . . . 9 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7372adantr 483 . . . . . . . 8 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → ∃𝑃 (𝑒 ∈ (𝐴𝐼) ∧ (𝑒(dist‘𝐺)) = (𝐵(dist‘𝐺)𝐶)))
7471, 73r19.29a 3291 . . . . . . 7 ((((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) ∧ 𝐶𝑒) → 𝐷 = 𝑓)
7574ex 415 . . . . . 6 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶𝑒𝐷 = 𝑓))
7614, 75syl5bir 245 . . . . 5 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (¬ 𝐶 = 𝑒𝐷 = 𝑓))
7776orrd 859 . . . 4 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 = 𝑒𝐷 = 𝑓))
787, 13, 77mpjaodan 955 . . 3 (((((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) ∧ 𝑓𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
7915, 39, 16, 17, 20, 26, 26, 29axtgsegcon 26252 . . . 4 (𝜑 → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8079ad2antrr 724 . . 3 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → ∃𝑓𝑃 (𝐶 ∈ (𝐴𝐼𝑓) ∧ (𝐶(dist‘𝐺)𝑓) = (𝐶(dist‘𝐺)𝐷)))
8178, 80r19.29a 3291 . 2 (((𝜑𝑒𝑃) ∧ (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶))) → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
8215, 39, 16, 17, 20, 29, 29, 26axtgsegcon 26252 . 2 (𝜑 → ∃𝑒𝑃 (𝐷 ∈ (𝐴𝐼𝑒) ∧ (𝐷(dist‘𝐺)𝑒) = (𝐷(dist‘𝐺)𝐶)))
8381, 82r19.29a 3291 1 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cfv 6357  (class class class)co 7158  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-cgrg 26299
This theorem is referenced by:  tgbtwnconn2  26364  tgbtwnconnln1  26368  hltr  26398  hlbtwn  26399
  Copyright terms: Public domain W3C validator