![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnconn2 | Structured version Visualization version GIF version |
Description: Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tgbtwnconn.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwnconn.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwnconn.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnconn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnconn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnconn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnconn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnconn2.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tgbtwnconn2.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnconn2.3 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnconn2 | ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2760 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tgbtwnconn.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwnconn.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐺 ∈ TarskiG) |
6 | tgbtwnconn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐴 ∈ 𝑃) |
8 | tgbtwnconn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵 ∈ 𝑃) |
10 | tgbtwnconn.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ 𝑃) |
12 | tgbtwnconn.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 12 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐷 ∈ 𝑃) |
14 | tgbtwnconn2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
15 | 14 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
16 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐴𝐼𝐷)) | |
17 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 16 | tgbtwnexch3 25588 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷)) |
18 | 17 | orcd 406 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐷)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
19 | 4 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
20 | 6 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
21 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ 𝑃) |
22 | 12 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ 𝑃) |
23 | 10 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
24 | tgbtwnconn2.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
25 | 24 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
26 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐴𝐼𝐶)) | |
27 | 1, 2, 3, 19, 20, 21, 22, 23, 25, 26 | tgbtwnexch3 25588 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
28 | 27 | olcd 407 | . 2 ⊢ ((𝜑 ∧ 𝐷 ∈ (𝐴𝐼𝐶)) → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
29 | tgbtwnconn2.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 1, 3, 4, 6, 8, 10, 12, 29, 14, 24 | tgbtwnconn1 25669 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶))) |
31 | 18, 28, 30 | mpjaodan 862 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 distcds 16152 TarskiGcstrkg 25528 Itvcitv 25534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-concat 13487 df-s1 13488 df-s2 13793 df-s3 13794 df-trkgc 25546 df-trkgb 25547 df-trkgcb 25548 df-trkg 25551 df-cgrg 25605 |
This theorem is referenced by: tgbtwnconn3 25671 tgbtwnconn22 25673 tgbtwnconnln2 25675 legtrid 25685 hlcgrex 25710 mirbtwnhl 25774 mirhl2 25775 krippenlem 25784 lnopp2hpgb 25854 |
Copyright terms: Public domain | W3C validator |