MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnintr Structured version   Visualization version   GIF version

Theorem tgbtwnintr 26273
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnintr.5 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
tgbtwnintr.6 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
Assertion
Ref Expression
tgbtwnintr (𝜑𝐵 ∈ (𝐴𝐼𝐶))

Proof of Theorem tgbtwnintr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 tgbtwnintr.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵𝑃)
8 simplr 767 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥𝑃)
9 simprr 771 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 26246 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥)
11 simprl 769 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶))
1210, 11eqeltrd 2913 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶))
13 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
14 tgbtwnintr.4 . . 3 (𝜑𝐷𝑃)
15 tgbtwnintr.1 . . 3 (𝜑𝐴𝑃)
16 tgbtwnintr.5 . . 3 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
17 tgbtwnintr.6 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
181, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17axtgpasch 26247 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵)))
1912, 18r19.29a 3289 1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153  df-trkgb 26229  df-trkg 26233
This theorem is referenced by:  tgbtwnexch3  26274  tgbtwnexch2  26276  tgbtwnconn1lem3  26354  tgbtwnconn3  26357  tgbtwnconn22  26359  tglineeltr  26411  mirconn  26458
  Copyright terms: Public domain W3C validator