MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnne Structured version   Visualization version   GIF version

Theorem tgbtwnne 25280
Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncomb.3 (𝜑𝐶𝑃)
tgbtwnne.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnne.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
tgbtwnne (𝜑𝐴𝐶)

Proof of Theorem tgbtwnne
StepHypRef Expression
1 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . . 5 = (dist‘𝐺)
3 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.1 . . . . . 6 (𝜑𝐴𝑃)
76adantr 481 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
8 tgbtwntriv2.2 . . . . . 6 (𝜑𝐵𝑃)
98adantr 481 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵𝑃)
10 tgbtwnne.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1110adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
12 simpr 477 . . . . . . 7 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 6621 . . . . . 6 ((𝜑𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶))
1411, 13eleqtrrd 2707 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 25260 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐵)
1615eqcomd 2632 . . 3 ((𝜑𝐴 = 𝐶) → 𝐵 = 𝐴)
17 tgbtwnne.2 . . . . 5 (𝜑𝐵𝐴)
1817adantr 481 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐵𝐴)
1918neneqd 2801 . . 3 ((𝜑𝐴 = 𝐶) → ¬ 𝐵 = 𝐴)
2016, 19pm2.65da 599 . 2 (𝜑 → ¬ 𝐴 = 𝐶)
2120neqned 2803 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  cfv 5850  (class class class)co 6605  Basecbs 15776  distcds 15866  TarskiGcstrkg 25224  Itvcitv 25230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-nul 4754
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-iota 5813  df-fv 5858  df-ov 6608  df-trkgb 25243  df-trkg 25247
This theorem is referenced by:  mideulem2  25521  opphllem  25522  outpasch  25542  lnopp2hpgb  25550  lmieu  25571  dfcgra2  25616
  Copyright terms: Public domain W3C validator