MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr2 Structured version   Visualization version   GIF version

Theorem tgbtwnouttr2 25587
Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr2.1 (𝜑𝐵𝐶)
tgbtwnouttr2.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr2.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 811 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝑥))
2 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . . 5 = (dist‘𝐺)
4 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
7 tgbtwnintr.3 . . . . . 6 (𝜑𝐶𝑃)
87ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶𝑃)
9 tgbtwnintr.4 . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐷𝑃)
11 tgbtwnintr.2 . . . . . 6 (𝜑𝐵𝑃)
1211ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝑃)
13 simplr 809 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥𝑃)
14 tgbtwnouttr2.1 . . . . . 6 (𝜑𝐵𝐶)
1514ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝐶)
16 tgbtwnintr.1 . . . . . . 7 (𝜑𝐴𝑃)
1716ad2antrr 764 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐴𝑃)
18 tgbtwnouttr2.2 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1918ad2antrr 764 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝐶))
202, 3, 4, 6, 17, 12, 8, 13, 19, 1tgbtwnexch3 25586 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝑥))
21 tgbtwnouttr2.3 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2221ad2antrr 764 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝐷))
23 simprr 813 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝑥) = (𝐶 𝐷))
24 eqidd 2759 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝐷) = (𝐶 𝐷))
252, 3, 4, 6, 8, 8, 10, 12, 13, 10, 15, 20, 22, 23, 24tgsegconeq 25578 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥 = 𝐷)
2625oveq2d 6827 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐴𝐼𝑥) = (𝐴𝐼𝐷))
271, 26eleqtrd 2839 . 2 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝐷))
282, 3, 4, 5, 16, 7, 7, 9axtgsegcon 25560 . 2 (𝜑 → ∃𝑥𝑃 (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷)))
2927, 28r19.29a 3214 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wcel 2137  wne 2930  cfv 6047  (class class class)co 6811  Basecbs 16057  distcds 16150  TarskiGcstrkg 25526  Itvcitv 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-nul 4939
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-iota 6010  df-fv 6055  df-ov 6814  df-trkgc 25544  df-trkgb 25545  df-trkgcb 25546  df-trkg 25549
This theorem is referenced by:  tgbtwnexch2  25588  tgbtwnouttr  25589  tgbtwnconn22  25671  tglineeltr  25723  mirconn  25770  footex  25810
  Copyright terms: Public domain W3C validator