MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr2 Structured version   Visualization version   GIF version

Theorem tgbtwnouttr2 26275
Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr2.1 (𝜑𝐵𝐶)
tgbtwnouttr2.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr2.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝑥))
2 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . . 5 = (dist‘𝐺)
4 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
7 tgbtwnintr.3 . . . . . 6 (𝜑𝐶𝑃)
87ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶𝑃)
9 tgbtwnintr.4 . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐷𝑃)
11 tgbtwnintr.2 . . . . . 6 (𝜑𝐵𝑃)
1211ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝑃)
13 simplr 767 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥𝑃)
14 tgbtwnouttr2.1 . . . . . 6 (𝜑𝐵𝐶)
1514ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝐶)
16 tgbtwnintr.1 . . . . . . 7 (𝜑𝐴𝑃)
1716ad2antrr 724 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐴𝑃)
18 tgbtwnouttr2.2 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1918ad2antrr 724 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝐶))
202, 3, 4, 6, 17, 12, 8, 13, 19, 1tgbtwnexch3 26274 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝑥))
21 tgbtwnouttr2.3 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2221ad2antrr 724 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝐷))
23 simprr 771 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝑥) = (𝐶 𝐷))
24 eqidd 2822 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝐷) = (𝐶 𝐷))
252, 3, 4, 6, 8, 8, 10, 12, 13, 10, 15, 20, 22, 23, 24tgsegconeq 26266 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥 = 𝐷)
2625oveq2d 7166 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐴𝐼𝑥) = (𝐴𝐼𝐷))
271, 26eleqtrd 2915 . 2 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝐷))
282, 3, 4, 5, 16, 7, 7, 9axtgsegcon 26244 . 2 (𝜑 → ∃𝑥𝑃 (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷)))
2927, 28r19.29a 3289 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cfv 6349  (class class class)co 7150  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233
This theorem is referenced by:  tgbtwnexch2  26276  tgbtwnouttr  26277  tgbtwnconn22  26359  tglineeltr  26411  mirconn  26458  footexALT  26498  footexlem1  26499  footexlem2  26500
  Copyright terms: Public domain W3C validator