MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrextend Structured version   Visualization version   GIF version

Theorem tgcgrextend 26273
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrextend.a (𝜑𝐴𝑃)
tgcgrextend.b (𝜑𝐵𝑃)
tgcgrextend.c (𝜑𝐶𝑃)
tgcgrextend.d (𝜑𝐷𝑃)
tgcgrextend.e (𝜑𝐸𝑃)
tgcgrextend.f (𝜑𝐹𝑃)
tgcgrextend.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrextend.2 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
tgcgrextend.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgcgrextend.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Assertion
Ref Expression
tgcgrextend (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem tgcgrextend
StepHypRef Expression
1 tgcgrextend.4 . . . 4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
21adantr 483 . . 3 ((𝜑𝐴 = 𝐵) → (𝐵 𝐶) = (𝐸 𝐹))
3 simpr 487 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
43oveq1d 7173 . . 3 ((𝜑𝐴 = 𝐵) → (𝐴 𝐶) = (𝐵 𝐶))
5 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
6 tkgeom.d . . . . 5 = (dist‘𝐺)
7 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
8 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
10 tgcgrextend.a . . . . . 6 (𝜑𝐴𝑃)
1110adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
12 tgcgrextend.b . . . . . 6 (𝜑𝐵𝑃)
1312adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
14 tgcgrextend.d . . . . . 6 (𝜑𝐷𝑃)
1514adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐷𝑃)
16 tgcgrextend.e . . . . . 6 (𝜑𝐸𝑃)
1716adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐸𝑃)
18 tgcgrextend.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
1918adantr 483 . . . . 5 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
205, 6, 7, 9, 11, 13, 15, 17, 19, 3tgcgreq 26270 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
2120oveq1d 7173 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 𝐹) = (𝐸 𝐹))
222, 4, 213eqtr4d 2868 . 2 ((𝜑𝐴 = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
238adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
24 tgcgrextend.c . . . 4 (𝜑𝐶𝑃)
2524adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐶𝑃)
2610adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑃)
27 tgcgrextend.f . . . 4 (𝜑𝐹𝑃)
2827adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐹𝑃)
2914adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐷𝑃)
3012adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑃)
3116adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐸𝑃)
32 simpr 487 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
33 tgcgrextend.1 . . . . 5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3433adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ (𝐴𝐼𝐶))
35 tgcgrextend.2 . . . . 5 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
3635adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐸 ∈ (𝐷𝐼𝐹))
3718adantr 483 . . . 4 ((𝜑𝐴𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
381adantr 483 . . . 4 ((𝜑𝐴𝐵) → (𝐵 𝐶) = (𝐸 𝐹))
395, 6, 7, 23, 26, 29tgcgrtriv 26272 . . . 4 ((𝜑𝐴𝐵) → (𝐴 𝐴) = (𝐷 𝐷))
405, 6, 7, 23, 26, 30, 29, 31, 37tgcgrcomlr 26268 . . . 4 ((𝜑𝐴𝐵) → (𝐵 𝐴) = (𝐸 𝐷))
415, 6, 7, 23, 26, 30, 25, 29, 31, 28, 26, 29, 32, 34, 36, 37, 38, 39, 40axtg5seg 26253 . . 3 ((𝜑𝐴𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
425, 6, 7, 23, 25, 26, 28, 29, 41tgcgrcomlr 26268 . 2 ((𝜑𝐴𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
4322, 42pm2.61dane 3106 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-trkgc 26236  df-trkgcb 26238  df-trkg 26241
This theorem is referenced by:  tgsegconeq  26274  tgcgrxfr  26306  lnext  26355  tgbtwnconn1lem1  26360  tgbtwnconn1lem2  26361  tgbtwnconn1lem3  26362  miriso  26458  mircgrextend  26470  midexlem  26480  opphllem  26523  flatcgra  26612  dfcgra2  26618
  Copyright terms: Public domain W3C validator