Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrsub Structured version   Visualization version   GIF version

Theorem tgcgrsub 25449
 Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tgbtwncgr.p 𝑃 = (Base‘𝐺)
tgbtwncgr.m = (dist‘𝐺)
tgbtwncgr.i 𝐼 = (Itv‘𝐺)
tgbtwncgr.g (𝜑𝐺 ∈ TarskiG)
tgbtwncgr.a (𝜑𝐴𝑃)
tgbtwncgr.b (𝜑𝐵𝑃)
tgbtwncgr.c (𝜑𝐶𝑃)
tgbtwncgr.d (𝜑𝐷𝑃)
tgcgrsub.e (𝜑𝐸𝑃)
tgcgrsub.f (𝜑𝐹𝑃)
tgcgrsub.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrsub.2 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
tgcgrsub.3 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
tgcgrsub.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Assertion
Ref Expression
tgcgrsub (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))

Proof of Theorem tgcgrsub
StepHypRef Expression
1 tgbtwncgr.p . 2 𝑃 = (Base‘𝐺)
2 tgbtwncgr.m . 2 = (dist‘𝐺)
3 tgbtwncgr.i . 2 𝐼 = (Itv‘𝐺)
4 tgbtwncgr.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwncgr.b . 2 (𝜑𝐵𝑃)
6 tgbtwncgr.a . 2 (𝜑𝐴𝑃)
7 tgcgrsub.e . 2 (𝜑𝐸𝑃)
8 tgbtwncgr.d . 2 (𝜑𝐷𝑃)
9 tgbtwncgr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrsub.f . . 3 (𝜑𝐹𝑃)
11 tgcgrsub.1 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
12 tgcgrsub.2 . . 3 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
13 tgcgrsub.3 . . 3 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
14 tgcgrsub.4 . . 3 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
151, 2, 3, 4, 6, 8tgcgrtriv 25424 . . 3 (𝜑 → (𝐴 𝐴) = (𝐷 𝐷))
161, 2, 3, 4, 6, 9, 8, 10, 13tgcgrcomlr 25420 . . 3 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
171, 2, 3, 4, 6, 5, 9, 6, 8, 7, 10, 8, 11, 12, 13, 14, 15, 16tgifscgr 25448 . 2 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
181, 2, 3, 4, 5, 6, 7, 8, 17tgcgrcomlr 25420 1 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397 This theorem is referenced by:  legtri3  25530  legbtwn  25534  tgcgrsub2  25535  colmid  25628
 Copyright terms: Public domain W3C validator