MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrxfr Structured version   Visualization version   GIF version

Theorem tgcgrxfr 25604
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgrxfr.a (𝜑𝐴𝑃)
tgcgrxfr.b (𝜑𝐵𝑃)
tgcgrxfr.c (𝜑𝐶𝑃)
tgcgrxfr.d (𝜑𝐷𝑃)
tgcgrxfr.f (𝜑𝐹𝑃)
tgcgrxfr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrxfr.2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrxfr (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝐼   𝑃,𝑒   ,𝑒   ,𝑒   𝜑,𝑒
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem tgcgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.a . . . 4 (𝜑𝐴𝑃)
21adantr 472 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
3 tgcgrxfr.p . . . 4 𝑃 = (Base‘𝐺)
4 tgcgrxfr.m . . . 4 = (dist‘𝐺)
5 tgcgrxfr.i . . . 4 𝐼 = (Itv‘𝐺)
6 tgcgrxfr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
8 tgcgrxfr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgcgrxfr.f . . . . 5 (𝜑𝐹𝑃)
1110adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 479 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
133, 4, 5, 7, 2, 9, 11, 12tgldim0itv 25590 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ (𝐷𝐼𝐹))
14 tgcgrxfr.r . . . 4 = (cgrG‘𝐺)
15 tgcgrxfr.b . . . . 5 (𝜑𝐵𝑃)
1615adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
17 tgcgrxfr.c . . . . 5 (𝜑𝐶𝑃)
1817adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
193, 4, 5, 7, 2, 16, 9, 12, 2tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐷 𝐴))
203, 4, 5, 7, 16, 18, 2, 12, 11tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐶) = (𝐴 𝐹))
213, 4, 5, 7, 18, 2, 11, 12, 9tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐶 𝐴) = (𝐹 𝐷))
223, 4, 14, 7, 2, 16, 18, 9, 2, 11, 19, 20, 21trgcgr 25602 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)
23 eleq1 2819 . . . . 5 (𝑒 = 𝐴 → (𝑒 ∈ (𝐷𝐼𝐹) ↔ 𝐴 ∈ (𝐷𝐼𝐹)))
24 eqidd 2753 . . . . . . 7 (𝑒 = 𝐴𝐷 = 𝐷)
25 id 22 . . . . . . 7 (𝑒 = 𝐴𝑒 = 𝐴)
26 eqidd 2753 . . . . . . 7 (𝑒 = 𝐴𝐹 = 𝐹)
2724, 25, 26s3eqd 13801 . . . . . 6 (𝑒 = 𝐴 → ⟨“𝐷𝑒𝐹”⟩ = ⟨“𝐷𝐴𝐹”⟩)
2827breq2d 4808 . . . . 5 (𝑒 = 𝐴 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩))
2923, 28anbi12d 749 . . . 4 (𝑒 = 𝐴 → ((𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩) ↔ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)))
3029rspcev 3441 . . 3 ((𝐴𝑃 ∧ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
312, 13, 22, 30syl12anc 1471 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
326ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐺 ∈ TarskiG)
33 simplr 809 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝑔𝑃)
348ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐷𝑃)
351ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐴𝑃)
3615ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐵𝑃)
373, 4, 5, 32, 33, 34, 35, 36axtgsegcon 25554 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
386ad7antr 783 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
3933ad2antrr 764 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑔𝑃)
4039ad2antrr 764 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝑃)
418ad7antr 783 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
42 simplr 809 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑒𝑃)
4342ad2antrr 764 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒𝑃)
44 simplr 809 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
45 simpllr 817 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
4645simpld 477 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑒))
47 simprl 811 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝑔𝐼𝑓))
483, 4, 5, 38, 40, 41, 43, 44, 46, 47tgbtwnexch3 25580 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝑓))
491ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
5017ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
5110ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
52 simp-5r 831 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
5352simprd 482 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑔)
5453necomd 2979 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝐷)
553, 4, 5, 38, 40, 41, 43, 44, 46, 47tgbtwnexch 25584 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑓))
5652simpld 477 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝐹𝐼𝑔))
573, 4, 5, 38, 51, 41, 40, 56tgbtwncom 25574 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝐹))
5815ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
59 tgcgrxfr.1 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
6059ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵 ∈ (𝐴𝐼𝐶))
6145simprd 482 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑒) = (𝐴 𝐵))
62 simprr 813 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝐵 𝐶))
633, 4, 5, 38, 41, 43, 44, 49, 58, 50, 48, 60, 61, 62tgcgrextend 25571 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑓) = (𝐴 𝐶))
64 tgcgrxfr.2 . . . . . . . . . . . . 13 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
6564ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝐹))
6665eqcomd 2758 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝐹) = (𝐴 𝐶))
673, 4, 5, 38, 41, 49, 50, 40, 44, 51, 54, 55, 57, 63, 66tgsegconeq 25572 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
6867oveq2d 6821 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷𝐼𝑓) = (𝐷𝐼𝐹))
6948, 68eleqtrd 2833 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝐹))
7061eqcomd 2758 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝑒))
7167oveq2d 6821 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝑒 𝐹))
7262, 71eqtr3d 2788 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑒 𝐹))
733, 4, 5, 6, 1, 17, 8, 10, 64tgcgrcomlr 25566 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
7473ad7antr 783 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝐹 𝐷))
753, 4, 14, 38, 49, 58, 50, 41, 43, 51, 70, 72, 74trgcgr 25602 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)
7669, 75jca 555 . . . . . . 7 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7732ad2antrr 764 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
7836ad2antrr 764 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐵𝑃)
7917ad5antr 775 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐶𝑃)
803, 4, 5, 77, 39, 42, 78, 79axtgsegcon 25554 . . . . . . 7 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → ∃𝑓𝑃 (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶)))
8176, 80r19.29a 3208 . . . . . 6 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
8281ex 449 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) → ((𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8382reximdva 3147 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → (∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8437, 83mpd 15 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
856adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
8610adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐹𝑃)
878adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
88 simpr 479 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
893, 4, 5, 85, 86, 87, 88tgbtwndiff 25592 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑔𝑃 (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
9084, 89r19.29a 3208 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
913, 1tgldimor 25588 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9231, 90, 91mpjaodan 862 1 (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wne 2924  wrex 3043   class class class wbr 4796  cfv 6041  (class class class)co 6805  1c1 10121  cle 10259  2c2 11254  chash 13303  ⟨“cs3 13779  Basecbs 16051  distcds 16144  TarskiGcstrkg 25520  Itvcitv 25526  cgrGccgrg 25596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkg 25543  df-cgrg 25597
This theorem is referenced by:  tgbtwnxfr  25616  lnext  25653  midexlem  25778
  Copyright terms: Public domain W3C validator