Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrxfr Structured version   Visualization version   GIF version

Theorem tgcgrxfr 25604
 Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgrxfr.a (𝜑𝐴𝑃)
tgcgrxfr.b (𝜑𝐵𝑃)
tgcgrxfr.c (𝜑𝐶𝑃)
tgcgrxfr.d (𝜑𝐷𝑃)
tgcgrxfr.f (𝜑𝐹𝑃)
tgcgrxfr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrxfr.2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrxfr (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝐼   𝑃,𝑒   ,𝑒   ,𝑒   𝜑,𝑒
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem tgcgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.a . . . 4 (𝜑𝐴𝑃)
21adantr 472 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
3 tgcgrxfr.p . . . 4 𝑃 = (Base‘𝐺)
4 tgcgrxfr.m . . . 4 = (dist‘𝐺)
5 tgcgrxfr.i . . . 4 𝐼 = (Itv‘𝐺)
6 tgcgrxfr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
8 tgcgrxfr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgcgrxfr.f . . . . 5 (𝜑𝐹𝑃)
1110adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 479 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
133, 4, 5, 7, 2, 9, 11, 12tgldim0itv 25590 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ (𝐷𝐼𝐹))
14 tgcgrxfr.r . . . 4 = (cgrG‘𝐺)
15 tgcgrxfr.b . . . . 5 (𝜑𝐵𝑃)
1615adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
17 tgcgrxfr.c . . . . 5 (𝜑𝐶𝑃)
1817adantr 472 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
193, 4, 5, 7, 2, 16, 9, 12, 2tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐷 𝐴))
203, 4, 5, 7, 16, 18, 2, 12, 11tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐶) = (𝐴 𝐹))
213, 4, 5, 7, 18, 2, 11, 12, 9tgldim0cgr 25591 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐶 𝐴) = (𝐹 𝐷))
223, 4, 14, 7, 2, 16, 18, 9, 2, 11, 19, 20, 21trgcgr 25602 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)
23 eleq1 2819 . . . . 5 (𝑒 = 𝐴 → (𝑒 ∈ (𝐷𝐼𝐹) ↔ 𝐴 ∈ (𝐷𝐼𝐹)))
24 eqidd 2753 . . . . . . 7 (𝑒 = 𝐴𝐷 = 𝐷)
25 id 22 . . . . . . 7 (𝑒 = 𝐴𝑒 = 𝐴)
26 eqidd 2753 . . . . . . 7 (𝑒 = 𝐴𝐹 = 𝐹)
2724, 25, 26s3eqd 13801 . . . . . 6 (𝑒 = 𝐴 → ⟨“𝐷𝑒𝐹”⟩ = ⟨“𝐷𝐴𝐹”⟩)
2827breq2d 4808 . . . . 5 (𝑒 = 𝐴 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩))
2923, 28anbi12d 749 . . . 4 (𝑒 = 𝐴 → ((𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩) ↔ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)))
3029rspcev 3441 . . 3 ((𝐴𝑃 ∧ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
312, 13, 22, 30syl12anc 1471 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
326ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐺 ∈ TarskiG)
33 simplr 809 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝑔𝑃)
348ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐷𝑃)
351ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐴𝑃)
3615ad3antrrr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐵𝑃)
373, 4, 5, 32, 33, 34, 35, 36axtgsegcon 25554 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
386ad7antr 783 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
3933ad2antrr 764 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑔𝑃)
4039ad2antrr 764 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝑃)
418ad7antr 783 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
42 simplr 809 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑒𝑃)
4342ad2antrr 764 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒𝑃)
44 simplr 809 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
45 simpllr 817 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
4645simpld 477 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑒))
47 simprl 811 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝑔𝐼𝑓))
483, 4, 5, 38, 40, 41, 43, 44, 46, 47tgbtwnexch3 25580 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝑓))
491ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
5017ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
5110ad7antr 783 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
52 simp-5r 831 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
5352simprd 482 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑔)
5453necomd 2979 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝐷)
553, 4, 5, 38, 40, 41, 43, 44, 46, 47tgbtwnexch 25584 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑓))
5652simpld 477 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝐹𝐼𝑔))
573, 4, 5, 38, 51, 41, 40, 56tgbtwncom 25574 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝐹))
5815ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
59 tgcgrxfr.1 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
6059ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵 ∈ (𝐴𝐼𝐶))
6145simprd 482 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑒) = (𝐴 𝐵))
62 simprr 813 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝐵 𝐶))
633, 4, 5, 38, 41, 43, 44, 49, 58, 50, 48, 60, 61, 62tgcgrextend 25571 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑓) = (𝐴 𝐶))
64 tgcgrxfr.2 . . . . . . . . . . . . 13 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
6564ad7antr 783 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝐹))
6665eqcomd 2758 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝐹) = (𝐴 𝐶))
673, 4, 5, 38, 41, 49, 50, 40, 44, 51, 54, 55, 57, 63, 66tgsegconeq 25572 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
6867oveq2d 6821 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷𝐼𝑓) = (𝐷𝐼𝐹))
6948, 68eleqtrd 2833 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝐹))
7061eqcomd 2758 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝑒))
7167oveq2d 6821 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝑒 𝐹))
7262, 71eqtr3d 2788 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑒 𝐹))
733, 4, 5, 6, 1, 17, 8, 10, 64tgcgrcomlr 25566 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
7473ad7antr 783 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝐹 𝐷))
753, 4, 14, 38, 49, 58, 50, 41, 43, 51, 70, 72, 74trgcgr 25602 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)
7669, 75jca 555 . . . . . . 7 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7732ad2antrr 764 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
7836ad2antrr 764 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐵𝑃)
7917ad5antr 775 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐶𝑃)
803, 4, 5, 77, 39, 42, 78, 79axtgsegcon 25554 . . . . . . 7 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → ∃𝑓𝑃 (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶)))
8176, 80r19.29a 3208 . . . . . 6 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
8281ex 449 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) → ((𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8382reximdva 3147 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → (∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8437, 83mpd 15 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
856adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
8610adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐹𝑃)
878adantr 472 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
88 simpr 479 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
893, 4, 5, 85, 86, 87, 88tgbtwndiff 25592 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑔𝑃 (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
9084, 89r19.29a 3208 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
913, 1tgldimor 25588 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
9231, 90, 91mpjaodan 862 1 (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∃wrex 3043   class class class wbr 4796  ‘cfv 6041  (class class class)co 6805  1c1 10121   ≤ cle 10259  2c2 11254  ♯chash 13303  ⟨“cs3 13779  Basecbs 16051  distcds 16144  TarskiGcstrkg 25520  Itvcitv 25526  cgrGccgrg 25596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkg 25543  df-cgrg 25597 This theorem is referenced by:  tgbtwnxfr  25616  lnext  25653  midexlem  25778
 Copyright terms: Public domain W3C validator