MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcolg Structured version   Visualization version   GIF version

Theorem tgcolg 25356
Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcolg (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgcolg
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
21olcd 408 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
3 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 eqid 2621 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
5 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 tglngval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
8 tgcolg.z . . . . . . 7 (𝜑𝑍𝑃)
98adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑍𝑃)
10 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1110adantr 481 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋𝑃)
123, 4, 5, 7, 9, 11tgbtwntriv2 25289 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋))
131oveq2d 6623 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌))
1412, 13eleqtrd 2700 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌))
15143mix2d 1235 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
162, 152thd 255 . 2 ((𝜑𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
17 simpr 477 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
1817neneqd 2795 . . . . 5 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
19 biorf 420 . . . . 5 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
2018, 19syl 17 . . . 4 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
21 orcom 402 . . . 4 ((𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2220, 21syl6bb 276 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)))
23 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
246adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝐺 ∈ TarskiG)
2510adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝑃)
26 tglngval.y . . . . 5 (𝜑𝑌𝑃)
2726adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝑃)
288adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑍𝑃)
293, 23, 5, 24, 25, 27, 17, 28tgellng 25355 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3022, 29bitr3d 270 . 2 ((𝜑𝑋𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3116, 30pm2.61dane 2877 1 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035   = wceq 1480  wcel 1987  wne 2790  cfv 5849  (class class class)co 6607  Basecbs 15784  distcds 15874  TarskiGcstrkg 25236  Itvcitv 25242  LineGclng 25243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-iota 5812  df-fun 5851  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-trkgc 25254  df-trkgcb 25256  df-trkg 25259
This theorem is referenced by:  btwncolg1  25357  btwncolg2  25358  btwncolg3  25359  colcom  25360  colrot1  25361  lnxfr  25368  lnext  25369  tgfscgr  25370  tglowdim2l  25452  outpasch  25554
  Copyright terms: Public domain W3C validator