MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgelrnln Structured version   Visualization version   GIF version

Theorem tgelrnln 26418
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgelrnln.x (𝜑𝑋𝐵)
tgelrnln.y (𝜑𝑌𝐵)
tgelrnln.d (𝜑𝑋𝑌)
Assertion
Ref Expression
tgelrnln (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)

Proof of Theorem tgelrnln
StepHypRef Expression
1 df-ov 7161 . 2 (𝑋𝐿𝑌) = (𝐿‘⟨𝑋, 𝑌⟩)
2 tglineelsb2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
3 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
4 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
63, 4, 5tglnfn 26335 . . . 4 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
72, 6syl 17 . . 3 (𝜑𝐿 Fn ((𝐵 × 𝐵) ∖ I ))
8 tgelrnln.x . . . . 5 (𝜑𝑋𝐵)
9 tgelrnln.y . . . . 5 (𝜑𝑌𝐵)
108, 9opelxpd 5595 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 tgelrnln.d . . . . 5 (𝜑𝑋𝑌)
12 df-br 5069 . . . . . . . 8 (𝑋 I 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ I )
13 ideqg 5724 . . . . . . . 8 (𝑌𝐵 → (𝑋 I 𝑌𝑋 = 𝑌))
1412, 13syl5bbr 287 . . . . . . 7 (𝑌𝐵 → (⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋 = 𝑌))
1514necon3bbid 3055 . . . . . 6 (𝑌𝐵 → (¬ ⟨𝑋, 𝑌⟩ ∈ I ↔ 𝑋𝑌))
1615biimpar 480 . . . . 5 ((𝑌𝐵𝑋𝑌) → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
179, 11, 16syl2anc 586 . . . 4 (𝜑 → ¬ ⟨𝑋, 𝑌⟩ ∈ I )
1810, 17eldifd 3949 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I ))
19 fnfvelrn 6850 . . 3 ((𝐿 Fn ((𝐵 × 𝐵) ∖ I ) ∧ ⟨𝑋, 𝑌⟩ ∈ ((𝐵 × 𝐵) ∖ I )) → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
207, 18, 19syl2anc 586 . 2 (𝜑 → (𝐿‘⟨𝑋, 𝑌⟩) ∈ ran 𝐿)
211, 20eqeltrid 2919 1 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  wne 3018  cdif 3935  cop 4575   class class class wbr 5068   I cid 5461   × cxp 5555  ran crn 5558   Fn wfn 6352  cfv 6357  (class class class)co 7158  Basecbs 16485  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-trkg 26241
This theorem is referenced by:  tghilberti1  26425  tglineinteq  26433  colline  26437  tglowdim2ln  26439  footexALT  26506  footexlem2  26508  foot  26510  perprag  26514  colperpexlem3  26520  mideulem2  26522  midex  26525  outpasch  26543  lnopp2hpgb  26551  colopp  26557  lmieu  26572  lmimid  26582  hypcgrlem1  26587  hypcgrlem2  26588  lnperpex  26591  trgcopy  26592  trgcopyeulem  26593  acopy  26621  acopyeu  26622  tgasa1  26646
  Copyright terms: Public domain W3C validator