MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineneq Structured version   Visualization version   GIF version

Theorem tglineneq 25452
Description: Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Assertion
Ref Expression
tglineneq (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))

Proof of Theorem tglineneq
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglineinteq.a . . . . 5 (𝜑𝐴𝑃)
6 tglineinteq.b . . . . 5 (𝜑𝐵𝑃)
7 tglineinteq.c . . . . . 6 (𝜑𝐶𝑃)
8 tglineinteq.e . . . . . 6 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
91, 2, 3, 4, 5, 6, 7, 8ncolne1 25433 . . . . 5 (𝜑𝐴𝐵)
101, 2, 3, 4, 5, 6, 9tglinerflx1 25441 . . . 4 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
1110adantr 481 . . 3 ((𝜑𝐶 = 𝐷) → 𝐴 ∈ (𝐴𝐿𝐵))
12 simplr 791 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶 = 𝐷)
134adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
147adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝑃)
15 tglineinteq.d . . . . . . . 8 (𝜑𝐷𝑃)
1615adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐷𝑃)
17 simpr 477 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
181, 3, 2, 13, 14, 16, 17tglngne 25358 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1918adantlr 750 . . . . 5 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
2019neneqd 2795 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → ¬ 𝐶 = 𝐷)
2112, 20pm2.65da 599 . . 3 ((𝜑𝐶 = 𝐷) → ¬ 𝐴 ∈ (𝐶𝐿𝐷))
22 nelne1 2886 . . 3 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
2311, 21, 22syl2anc 692 . 2 ((𝜑𝐶 = 𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
244ad2antrr 761 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
256ad2antrr 761 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝑃)
267ad2antrr 761 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝑃)
275ad2antrr 761 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝑃)
28 pm2.46 413 . . . . . . . . 9 (¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶) → ¬ 𝐵 = 𝐶)
298, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐵 = 𝐶)
3029neqned 2797 . . . . . . 7 (𝜑𝐵𝐶)
3130ad2antrr 761 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝐶)
3215ad2antrr 761 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐷𝑃)
33 simplr 791 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝐷)
341, 2, 3, 24, 26, 32, 33tglinerflx1 25441 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
35 simpr 477 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
3634, 35eleqtrrd 2701 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐴𝐿𝐵))
371, 3, 2, 24, 27, 25, 36tglngne 25358 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝐵)
381, 2, 3, 24, 25, 26, 27, 31, 36, 37lnrot1 25431 . . . . 5 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐵𝐿𝐶))
3938orcd 407 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
408ad2antrr 761 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
4139, 40pm2.65da 599 . . 3 ((𝜑𝐶𝐷) → ¬ (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
4241neqned 2797 . 2 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
4323, 42pm2.61dane 2877 1 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  cfv 5852  (class class class)co 6610  Basecbs 15788  TarskiGcstrkg 25242  Itvcitv 25248  LineGclng 25249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-trkgc 25260  df-trkgb 25261  df-trkgcb 25262  df-trkg 25265
This theorem is referenced by:  tglineinteq  25453  perpneq  25522
  Copyright terms: Public domain W3C validator