MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglndim0 Structured version   Visualization version   GIF version

Theorem tglndim0 25505
Description: There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglndim0.d (𝜑 → (#‘𝐵) = 1)
Assertion
Ref Expression
tglndim0 (𝜑 → ¬ 𝐴 ∈ ran 𝐿)

Proof of Theorem tglndim0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
2 tglndim0.d . . . . . 6 (𝜑 → (#‘𝐵) = 1)
32ad4antr 767 . . . . 5 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → (#‘𝐵) = 1)
4 simpllr 798 . . . . 5 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐵)
5 simplr 791 . . . . 5 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝐵)
61, 3, 4, 5tgldim0eq 25379 . . . 4 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
7 simprr 795 . . . 4 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
86, 7pm2.21ddne 2875 . . 3 (((((𝜑𝐴 ∈ ran 𝐿) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ⊥)
9 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
10 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
11 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
1211adantr 481 . . . 4 ((𝜑𝐴 ∈ ran 𝐿) → 𝐺 ∈ TarskiG)
13 simpr 477 . . . 4 ((𝜑𝐴 ∈ ran 𝐿) → 𝐴 ∈ ran 𝐿)
141, 9, 10, 12, 13tgisline 25503 . . 3 ((𝜑𝐴 ∈ ran 𝐿) → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
158, 14r19.29vva 3076 . 2 ((𝜑𝐴 ∈ ran 𝐿) → ⊥)
1615inegd 1501 1 (𝜑 → ¬ 𝐴 ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wfal 1486  wcel 1988  wne 2791  ran crn 5105  cfv 5876  (class class class)co 6635  1c1 9922  #chash 13100  Basecbs 15838  TarskiGcstrkg 25310  Itvcitv 25316  LineGclng 25317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101  df-trkg 25333
This theorem is referenced by:  hpgerlem  25638
  Copyright terms: Public domain W3C validator