Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnfn Structured version   Visualization version   GIF version

Theorem tglnfn 25662
 Description: Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglng.p 𝑃 = (Base‘𝐺)
tglng.l 𝐿 = (LineG‘𝐺)
tglng.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
tglnfn (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))

Proof of Theorem tglnfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglng.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 fvex 6363 . . . . . . . 8 (Base‘𝐺) ∈ V
31, 2eqeltri 2835 . . . . . . 7 𝑃 ∈ V
43rabex 4964 . . . . . 6 {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
54rgen2w 3063 . . . . 5 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V
6 eqid 2760 . . . . . 6 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
76fmpt2x 7405 . . . . 5 (∀𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥}){𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V)
85, 7mpbi 220 . . . 4 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V
9 ffn 6206 . . . 4 ((𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}): 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))⟶V → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})))
108, 9ax-mp 5 . . 3 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥}))
11 xpdifid 5720 . . . 4 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) = ((𝑃 × 𝑃) ∖ I )
1211fneq2i 6147 . . 3 ((𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn 𝑥𝑃 ({𝑥} × (𝑃 ∖ {𝑥})) ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I ))
1310, 12mpbi 220 . 2 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I )
14 tglng.l . . . 4 𝐿 = (LineG‘𝐺)
15 tglng.i . . . 4 𝐼 = (Itv‘𝐺)
161, 14, 15tglng 25661 . . 3 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1716fneq1d 6142 . 2 (𝐺 ∈ TarskiG → (𝐿 Fn ((𝑃 × 𝑃) ∖ I ) ↔ (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) Fn ((𝑃 × 𝑃) ∖ I )))
1813, 17mpbiri 248 1 (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1071   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   ∖ cdif 3712  {csn 4321  ∪ ciun 4672   I cid 5173   × cxp 5264   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ↦ cmpt2 6816  Basecbs 16079  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-trkg 25572 This theorem is referenced by:  tglngne  25665  tgelrnln  25745
 Copyright terms: Public domain W3C validator