Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt2 Structured version   Visualization version   GIF version

Theorem tglnpt2 25436
 Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglnpt2.p 𝑃 = (Base‘𝐺)
tglnpt2.i 𝐼 = (Itv‘𝐺)
tglnpt2.l 𝐿 = (LineG‘𝐺)
tglnpt2.g (𝜑𝐺 ∈ TarskiG)
tglnpt2.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt2.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt2 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐺(𝑦)   𝐼(𝑦)   𝐿(𝑦)

Proof of Theorem tglnpt2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglnpt2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 tglnpt2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglnpt2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglnpt2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 806 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑃)
7 simpllr 798 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝑃)
8 simplrr 800 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑧)
91, 2, 3, 5, 6, 7, 8tglinerflx2 25429 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑧))
10 simplrl 799 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐴 = (𝑥𝐿𝑧))
119, 10eleqtrrd 2701 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝐴)
12 simpr 477 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋 = 𝑥)
1312, 8eqnetrd 2857 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋𝑧)
14 neeq2 2853 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦𝑋𝑧))
1514rspcev 3295 . . . 4 ((𝑧𝐴𝑋𝑧) → ∃𝑦𝐴 𝑋𝑦)
1611, 13, 15syl2anc 692 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → ∃𝑦𝐴 𝑋𝑦)
174ad4antr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
18 simp-4r 806 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑃)
19 simpllr 798 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑧𝑃)
20 simplrr 800 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑧)
211, 2, 3, 17, 18, 19, 20tglinerflx1 25428 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥 ∈ (𝑥𝐿𝑧))
22 simplrl 799 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐴 = (𝑥𝐿𝑧))
2321, 22eleqtrrd 2701 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝐴)
24 simpr 477 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑋𝑥)
25 neeq2 2853 . . . . 5 (𝑦 = 𝑥 → (𝑋𝑦𝑋𝑥))
2625rspcev 3295 . . . 4 ((𝑥𝐴𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2723, 24, 26syl2anc 692 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2816, 27pm2.61dane 2877 . 2 ((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) → ∃𝑦𝐴 𝑋𝑦)
29 tglnpt2.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
301, 2, 3, 4, 29tgisline 25422 . 2 (𝜑 → ∃𝑥𝑃𝑧𝑃 (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧))
3128, 30r19.29vva 3073 1 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  ran crn 5075  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  TarskiGcstrkg 25229  Itvcitv 25235  LineGclng 25236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252 This theorem is referenced by:  perpneq  25509  perpdrag  25520  oppperpex  25545  lnperpex  25595
 Copyright terms: Public domain W3C validator