MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim2ln Structured version   Visualization version   GIF version

Theorem tglowdim2ln 25446
Description: There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglowdim2l.1 (𝜑𝐺DimTarskiG≥2)
tglowdim2ln.a (𝜑𝐴𝑃)
tglowdim2ln.b (𝜑𝐵𝑃)
tglowdim2ln.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tglowdim2ln (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Distinct variable groups:   𝐺,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐   𝐴,𝑐   𝐵,𝑐   𝐿,𝑐

Proof of Theorem tglowdim2ln
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglowdim2l.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
61, 2, 3, 4, 5tglowdim2l 25445 . . . 4 (𝜑 → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
76adantr 481 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
8 simplr3 1103 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧𝑃)
9 simpllr 798 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
10 eleq1 2686 . . . . . . . . . . 11 (𝑐 = 𝑧 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑧 ∈ (𝐴𝐿𝐵)))
1110rspcva 3293 . . . . . . . . . 10 ((𝑧𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑧 ∈ (𝐴𝐿𝐵))
128, 9, 11syl2anc 692 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝐴𝐿𝐵))
134ad3antrrr 765 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐺 ∈ TarskiG)
14 simplr1 1101 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑃)
15 simplr2 1102 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑃)
16 simpr 477 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ¬ 𝑎 = 𝑏)
1716neqned 2797 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑏)
18 tglowdim2ln.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
1918ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝑃)
20 tglowdim2ln.b . . . . . . . . . . . 12 (𝜑𝐵𝑃)
2120ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐵𝑃)
22 tglowdim2ln.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2322ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝐵)
241, 2, 3, 13, 19, 21, 23tgelrnln 25425 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) ∈ ran 𝐿)
25 eleq1 2686 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑎 ∈ (𝐴𝐿𝐵)))
2625rspcva 3293 . . . . . . . . . . 11 ((𝑎𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑎 ∈ (𝐴𝐿𝐵))
2714, 9, 26syl2anc 692 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (𝐴𝐿𝐵))
28 eleq1 2686 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑏 ∈ (𝐴𝐿𝐵)))
2928rspcva 3293 . . . . . . . . . . 11 ((𝑏𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑏 ∈ (𝐴𝐿𝐵))
3015, 9, 29syl2anc 692 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (𝐴𝐿𝐵))
311, 2, 3, 13, 14, 15, 17, 17, 24, 27, 30tglinethru 25431 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) = (𝑎𝐿𝑏))
3212, 31eleqtrd 2700 . . . . . . . 8 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝑎𝐿𝑏))
3332ex 450 . . . . . . 7 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (¬ 𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3433orrd 393 . . . . . 6 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3534orcomd 403 . . . . 5 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3635ralrimivvva 2966 . . . 4 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
37 dfral2 2988 . . . . . . . 8 (∀𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3837ralbii 2974 . . . . . . 7 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
39 ralnex 2986 . . . . . . 7 (∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4038, 39bitri 264 . . . . . 6 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4140ralbii 2974 . . . . 5 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
42 ralnex 2986 . . . . 5 (∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4341, 42bitri 264 . . . 4 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4436, 43sylib 208 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
457, 44pm2.65da 599 . 2 (𝜑 → ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
46 rexnal 2989 . 2 (∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵) ↔ ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
4745, 46sylibr 224 1 (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  2c2 11014  Basecbs 15781  TarskiGcstrkg 25229  DimTarskiGcstrkgld 25233  Itvcitv 25235  LineGclng 25236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkgld 25251  df-trkg 25252  df-cgrg 25306
This theorem is referenced by:  colperpex  25525  cgrg3col4  25634
  Copyright terms: Public domain W3C validator