Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtde Structured version   Visualization version   GIF version

Theorem tgoldbachgtde 30866
Description: Lemma for tgoldbachgtd 30868. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtda.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtda.n (𝜑𝑁𝑂)
tgoldbachgtda.0 (𝜑 → (10↑27) ≤ 𝑁)
tgoldbachgtda.h (𝜑𝐻:ℕ⟶(0[,)+∞))
tgoldbachgtda.k (𝜑𝐾:ℕ⟶(0[,)+∞))
tgoldbachgtda.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
tgoldbachgtda.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
tgoldbachgtda.3 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Assertion
Ref Expression
tgoldbachgtde (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Distinct variable groups:   𝑚,𝐻,𝑛,𝑥   𝑚,𝐾,𝑛,𝑥   𝑚,𝑁,𝑛,𝑥,𝑧   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧)   𝐾(𝑧)   𝑂(𝑥)

Proof of Theorem tgoldbachgtde
StepHypRef Expression
1 tgoldbachgtda.o . . . . . . . . 9 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtda.n . . . . . . . . 9 (𝜑𝑁𝑂)
3 tgoldbachgtda.0 . . . . . . . . 9 (𝜑 → (10↑27) ≤ 𝑁)
41, 2, 3tgoldbachgnn 30865 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11389 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 3nn0 11348 . . . . . . . 8 3 ∈ ℕ0
76a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℕ0)
8 ssid 3657 . . . . . . . 8 ℕ ⊆ ℕ
98a1i 11 . . . . . . 7 (𝜑 → ℕ ⊆ ℕ)
105, 7, 9reprfi2 30829 . . . . . 6 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
11 diffi 8233 . . . . . 6 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
1210, 11syl 17 . . . . 5 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
13 difssd 3771 . . . . . . 7 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ⊆ (ℕ(repr‘3)𝑁))
1413sselda 3636 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
15 vmaf 24890 . . . . . . . . . 10 Λ:ℕ⟶ℝ
1615a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → Λ:ℕ⟶ℝ)
178a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
185nn0zd 11518 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1918adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
206a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
21 simpr 476 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2217, 19, 20, 21reprf 30818 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
23 c0ex 10072 . . . . . . . . . . . . 13 0 ∈ V
2423tpid1 4335 . . . . . . . . . . . 12 0 ∈ {0, 1, 2}
25 fzo0to3tp 12594 . . . . . . . . . . . 12 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2729 . . . . . . . . . . 11 0 ∈ (0..^3)
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
2822, 27ffvelrnd 6400 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
2916, 28ffvelrnd 6400 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘0)) ∈ ℝ)
30 tgoldbachgtda.h . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶(0[,)+∞))
31 rge0ssre 12318 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
32 fss 6094 . . . . . . . . . . 11 ((𝐻:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐻:ℕ⟶ℝ)
3330, 31, 32sylancl 695 . . . . . . . . . 10 (𝜑𝐻:ℕ⟶ℝ)
3433adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐻:ℕ⟶ℝ)
3534, 28ffvelrnd 6400 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3629, 35remulcld 10108 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
37 1ex 10073 . . . . . . . . . . . . . 14 1 ∈ V
3837tpid2 4336 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3938, 25eleqtrri 2729 . . . . . . . . . . . 12 1 ∈ (0..^3)
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
4122, 40ffvelrnd 6400 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
4216, 41ffvelrnd 6400 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘1)) ∈ ℝ)
43 tgoldbachgtda.k . . . . . . . . . . . 12 (𝜑𝐾:ℕ⟶(0[,)+∞))
44 fss 6094 . . . . . . . . . . . 12 ((𝐾:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐾:ℕ⟶ℝ)
4543, 31, 44sylancl 695 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶ℝ)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐾:ℕ⟶ℝ)
4746, 41ffvelrnd 6400 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4842, 47remulcld 10108 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
49 2ex 11130 . . . . . . . . . . . . . 14 2 ∈ V
5049tpid3 4338 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
5150, 25eleqtrri 2729 . . . . . . . . . . . 12 2 ∈ (0..^3)
5251a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
5322, 52ffvelrnd 6400 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
5416, 53ffvelrnd 6400 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘2)) ∈ ℝ)
5546, 53ffvelrnd 6400 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5654, 55remulcld 10108 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5748, 56remulcld 10108 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5836, 57remulcld 10108 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
5914, 58syldan 486 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
6012, 59fsumrecl 14509 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
61 0nn0 11345 . . . . . . 7 0 ∈ ℕ0
62 qssre 11836 . . . . . . . 8 ℚ ⊆ ℝ
63 4nn0 11349 . . . . . . . . . . . 12 4 ∈ ℕ0
64 2nn0 11347 . . . . . . . . . . . . 13 2 ∈ ℕ0
65 nn0ssq 11834 . . . . . . . . . . . . . . . 16 0 ⊆ ℚ
66 8nn0 11353 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
6765, 66sselii 3633 . . . . . . . . . . . . . . 15 8 ∈ ℚ
6863, 67dp2clq 29716 . . . . . . . . . . . . . 14 48 ∈ ℚ
6964, 68dp2clq 29716 . . . . . . . . . . . . 13 248 ∈ ℚ
7064, 69dp2clq 29716 . . . . . . . . . . . 12 2248 ∈ ℚ
7163, 70dp2clq 29716 . . . . . . . . . . 11 42248 ∈ ℚ
7261, 71dp2clq 29716 . . . . . . . . . 10 042248 ∈ ℚ
7361, 72dp2clq 29716 . . . . . . . . 9 0042248 ∈ ℚ
7461, 73dp2clq 29716 . . . . . . . 8 00042248 ∈ ℚ
7562, 74sselii 3633 . . . . . . 7 00042248 ∈ ℝ
76 dpcl 29726 . . . . . . 7 ((0 ∈ ℕ000042248 ∈ ℝ) → (0.00042248) ∈ ℝ)
7761, 75, 76mp2an 708 . . . . . 6 (0.00042248) ∈ ℝ
7877a1i 11 . . . . 5 (𝜑 → (0.00042248) ∈ ℝ)
794nnred 11073 . . . . . 6 (𝜑𝑁 ∈ ℝ)
8079resqcld 13075 . . . . 5 (𝜑 → (𝑁↑2) ∈ ℝ)
8178, 80remulcld 10108 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ∈ ℝ)
8210, 58fsumrecl 14509 . . . 4 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
83 7nn0 11352 . . . . . . . . 9 7 ∈ ℕ0
846, 68dp2clq 29716 . . . . . . . . . 10 348 ∈ ℚ
8562, 84sselii 3633 . . . . . . . . 9 348 ∈ ℝ
86 dpcl 29726 . . . . . . . . 9 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
8783, 85, 86mp2an 708 . . . . . . . 8 (7.348) ∈ ℝ
8887a1i 11 . . . . . . 7 (𝜑 → (7.348) ∈ ℝ)
894nnrpd 11908 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
9089relogcld 24414 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
915nn0ge0d 11392 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
9279, 91resqrtcld 14200 . . . . . . . 8 (𝜑 → (√‘𝑁) ∈ ℝ)
9389sqrtgt0d 14195 . . . . . . . . 9 (𝜑 → 0 < (√‘𝑁))
9493gt0ne0d 10630 . . . . . . . 8 (𝜑 → (√‘𝑁) ≠ 0)
9590, 92, 94redivcld 10891 . . . . . . 7 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
9688, 95remulcld 10108 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
9796, 80remulcld 10108 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
98 tgoldbachgtda.1 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
99 tgoldbachgtda.2 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
1001, 4, 3, 30, 43, 98, 99hgt750leme 30864 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
101 2z 11447 . . . . . . . 8 2 ∈ ℤ
102101a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
10389, 102rpexpcld 13072 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℝ+)
104 hgt750lem 30857 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (10↑27) ≤ 𝑁) → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
1055, 3, 104syl2anc 694 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
10696, 78, 103, 105ltmul1dd 11965 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) < ((0.00042248) · (𝑁↑2)))
10760, 97, 81, 100, 106lelttrd 10233 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < ((0.00042248) · (𝑁↑2)))
108 tgoldbachgtda.3 . . . . 5 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
10933, 45, 5circlemethhgt 30849 . . . . 5 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘𝑓 · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
110108, 109breqtrrd 4713 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11160, 81, 82, 107, 110ltletrd 10235 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11260, 82posdifd 10652 . . 3 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ↔ 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))))
113111, 112mpbid 222 . 2 (𝜑 → 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
114 inss2 3867 . . . . . . . 8 (𝑂 ∩ ℙ) ⊆ ℙ
115 prmssnn 15437 . . . . . . . 8 ℙ ⊆ ℕ
116114, 115sstri 3645 . . . . . . 7 (𝑂 ∩ ℙ) ⊆ ℕ
117116a1i 11 . . . . . 6 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
1189, 18, 7, 117reprss 30823 . . . . 5 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁))
11910, 118ssfid 8224 . . . 4 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin)
120118sselda 3636 . . . . 5 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
12158recnd 10106 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
122120, 121syldan 486 . . . 4 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
123119, 122fsumcl 14508 . . 3 (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
12460recnd 10106 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
125 disjdif 4073 . . . . 5 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅
126125a1i 11 . . . 4 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅)
127 undif 4082 . . . . . 6 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁) ↔ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
128118, 127sylib 208 . . . . 5 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
129128eqcomd 2657 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) = (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))))
130126, 129, 10, 121fsumsplit 14515 . . 3 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = (Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) + Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
131123, 124, 130mvrraddd 10483 . 2 (𝜑 → (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) = Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
132113, 131breqtrd 4711 1 (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {ctp 4214   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   · cmul 9979  +∞cpnf 10109   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  5c5 11111  7c7 11113  8c8 11114  9c9 11115  0cn0 11330  cz 11415  cdc 11531  cq 11826  (,)cioo 12213  [,)cico 12215  ..^cfzo 12504  cexp 12900  csqrt 14017  Σcsu 14460  expce 14836  πcpi 14841  cdvds 15027  cprime 15432  citg 23432  logclog 24346  Λcvma 24863  cdp2 29705  .cdp 29723  reprcrepr 30814  vtscvts 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-ros335 30851  ax-ros336 30852
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-r1 8665  df-rank 8666  df-card 8803  df-acn 8806  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-pmtr 17908  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482  df-limc 23675  df-dv 23676  df-ulm 24176  df-log 24348  df-cxp 24349  df-atan 24639  df-cht 24868  df-vma 24869  df-chp 24870  df-dp2 29706  df-dp 29724  df-repr 30815  df-vts 30842
This theorem is referenced by:  tgoldbachgtda  30867
  Copyright terms: Public domain W3C validator