Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachltOLD Structured version   Visualization version   GIF version

Theorem tgoldbachltOLD 41019
Description: Obsolete version of tgoldbachlt 41012 as of 9-Sep-2021. (Contributed by AV, 4-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tgoldbachltOLD 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachltOLD
StepHypRef Expression
1 8nn0 11266 . . . 4 8 ∈ ℕ0
2 8nn 11142 . . . 4 8 ∈ ℕ
31, 2decnncl 11469 . . 3 88 ∈ ℕ
4 10nnOLD 11144 . . . 4 10 ∈ ℕ
5 2nn0 11260 . . . . 5 2 ∈ ℕ0
6 9nn0 11267 . . . . 5 9 ∈ ℕ0
75, 6deccl 11463 . . . 4 29 ∈ ℕ0
8 nnexpcl 12820 . . . 4 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
94, 7, 8mp2an 707 . . 3 (10↑29) ∈ ℕ
103, 9nnmulcli 10995 . 2 (88 · (10↑29)) ∈ ℕ
11 id 22 . . 3 ((88 · (10↑29)) ∈ ℕ → (88 · (10↑29)) ∈ ℕ)
12 breq2 4622 . . . . 5 (𝑚 = (88 · (10↑29)) → ((8 · (10↑30)) < 𝑚 ↔ (8 · (10↑30)) < (88 · (10↑29))))
13 breq2 4622 . . . . . . . 8 (𝑚 = (88 · (10↑29)) → (𝑛 < 𝑚𝑛 < (88 · (10↑29))))
1413anbi2d 739 . . . . . . 7 (𝑚 = (88 · (10↑29)) → ((7 < 𝑛𝑛 < 𝑚) ↔ (7 < 𝑛𝑛 < (88 · (10↑29)))))
1514imbi1d 331 . . . . . 6 (𝑚 = (88 · (10↑29)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ) ↔ ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
1615ralbidv 2981 . . . . 5 (𝑚 = (88 · (10↑29)) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ) ↔ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
1712, 16anbi12d 746 . . . 4 (𝑚 = (88 · (10↑29)) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))))
1817adantl 482 . . 3 (((88 · (10↑29)) ∈ ℕ ∧ 𝑚 = (88 · (10↑29))) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))))
19 simplr 791 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ Odd )
20 simprl 793 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 7 < 𝑛)
21 simprr 795 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 < (88 · (10↑29)))
22 tgblthelfgottOLD 41018 . . . . . . 7 ((𝑛 ∈ Odd ∧ 7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )
2319, 20, 21, 22syl3anc 1323 . . . . . 6 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ GoldbachOddALTV )
2423ex 450 . . . . 5 (((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) → ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))
2524ralrimiva 2961 . . . 4 ((88 · (10↑29)) ∈ ℕ → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))
262, 9nnmulcli 10995 . . . . . . 7 (8 · (10↑29)) ∈ ℕ
2726nngt0i 11005 . . . . . 6 0 < (8 · (10↑29))
2826nnrei 10980 . . . . . . 7 (8 · (10↑29)) ∈ ℝ
29 3nn0 11261 . . . . . . . . . . 11 3 ∈ ℕ0
30 0nn0 11258 . . . . . . . . . . 11 0 ∈ ℕ0
3129, 30deccl 11463 . . . . . . . . . 10 30 ∈ ℕ0
32 nnexpcl 12820 . . . . . . . . . 10 ((10 ∈ ℕ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℕ)
334, 31, 32mp2an 707 . . . . . . . . 9 (10↑30) ∈ ℕ
342, 33nnmulcli 10995 . . . . . . . 8 (8 · (10↑30)) ∈ ℕ
3534nnrei 10980 . . . . . . 7 (8 · (10↑30)) ∈ ℝ
3628, 35ltaddposi 10528 . . . . . 6 (0 < (8 · (10↑29)) ↔ (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29))))
3727, 36mpbi 220 . . . . 5 (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29)))
38 dfdecOLD 11446 . . . . . . 7 88 = ((10 · 8) + 8)
3938oveq1i 6620 . . . . . 6 (88 · (10↑29)) = (((10 · 8) + 8) · (10↑29))
404, 2nnmulcli 10995 . . . . . . . 8 (10 · 8) ∈ ℕ
4140nncni 10981 . . . . . . 7 (10 · 8) ∈ ℂ
42 8cn 11057 . . . . . . 7 8 ∈ ℂ
439nncni 10981 . . . . . . 7 (10↑29) ∈ ℂ
4441, 42, 43adddiri 10002 . . . . . 6 (((10 · 8) + 8) · (10↑29)) = (((10 · 8) · (10↑29)) + (8 · (10↑29)))
4541, 43mulcomi 9997 . . . . . . . . 9 ((10 · 8) · (10↑29)) = ((10↑29) · (10 · 8))
464nncni 10981 . . . . . . . . . 10 10 ∈ ℂ
4743, 46, 42mulassi 10000 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑29) · (10 · 8))
48 nncn 10979 . . . . . . . . . . . . 13 (10 ∈ ℕ → 10 ∈ ℂ)
497a1i 11 . . . . . . . . . . . . 13 (10 ∈ ℕ → 29 ∈ ℕ0)
5048, 49expp1d 12956 . . . . . . . . . . . 12 (10 ∈ ℕ → (10↑(29 + 1)) = ((10↑29) · 10))
514, 50ax-mp 5 . . . . . . . . . . 11 (10↑(29 + 1)) = ((10↑29) · 10)
5251eqcomi 2630 . . . . . . . . . 10 ((10↑29) · 10) = (10↑(29 + 1))
5352oveq1i 6620 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑(29 + 1)) · 8)
5445, 47, 533eqtr2i 2649 . . . . . . . 8 ((10 · 8) · (10↑29)) = ((10↑(29 + 1)) · 8)
5554oveq1i 6620 . . . . . . 7 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = (((10↑(29 + 1)) · 8) + (8 · (10↑29)))
56 2p1e3 11102 . . . . . . . . . . 11 (2 + 1) = 3
57 eqid 2621 . . . . . . . . . . 11 29 = 29
585, 56, 57decsucc 11501 . . . . . . . . . 10 (29 + 1) = 30
5958oveq2i 6621 . . . . . . . . 9 (10↑(29 + 1)) = (10↑30)
6059oveq1i 6620 . . . . . . . 8 ((10↑(29 + 1)) · 8) = ((10↑30) · 8)
6160oveq1i 6620 . . . . . . 7 (((10↑(29 + 1)) · 8) + (8 · (10↑29))) = (((10↑30) · 8) + (8 · (10↑29)))
6233nncni 10981 . . . . . . . 8 (10↑30) ∈ ℂ
63 mulcom 9973 . . . . . . . . 9 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → ((10↑30) · 8) = (8 · (10↑30)))
6463oveq1d 6625 . . . . . . . 8 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29))))
6562, 42, 64mp2an 707 . . . . . . 7 (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6655, 61, 653eqtri 2647 . . . . . 6 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6739, 44, 663eqtri 2647 . . . . 5 (88 · (10↑29)) = ((8 · (10↑30)) + (8 · (10↑29)))
6837, 67breqtrri 4645 . . . 4 (8 · (10↑30)) < (88 · (10↑29))
6925, 68jctil 559 . . 3 ((88 · (10↑29)) ∈ ℕ → ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
7011, 18, 69rspcedvd 3305 . 2 ((88 · (10↑29)) ∈ ℕ → ∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )))
7110, 70ax-mp 5 1 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4618  (class class class)co 6610  cc 9885  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025  cn 10971  2c2 11021  3c3 11022  7c7 11026  8c8 11027  9c9 11028  10c10 11029  0cn0 11243  cdc 11444  cexp 12807   Odd codd 40858   GoldbachOddALTV cgboa 40951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-bgbltosilvaOLD 41015  ax-hgprmladderOLD 41017
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-10OLD 11038  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-rp 11784  df-ico 12130  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-prm 15317  df-iccp 40669  df-even 40859  df-odd 40860  df-gbe 40952  df-gboa 40954
This theorem is referenced by:  tgoldbachOLD  41021
  Copyright terms: Public domain W3C validator