Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpinv Structured version   Visualization version   GIF version

Theorem tgpinv 21794
 Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
tgpinv (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))

Proof of Theorem tgpinv
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2istgp 21786 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
43simp3bi 1076 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1992  ‘cfv 5850  (class class class)co 6605  TopOpenctopn 15998  Grpcgrp 17338  invgcminusg 17339   Cn ccn 20933  TopMndctmd 21779  TopGrpctgp 21780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-nul 4754 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-iota 5813  df-fv 5858  df-ov 6608  df-tgp 21782 This theorem is referenced by:  grpinvhmeo  21795  tgpsubcn  21799  tgpmulg  21802  oppgtgp  21807  subgtgp  21814  prdstgpd  21833  tsmsinv  21856  invrcn2  21888
 Copyright terms: Public domain W3C validator