MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqioo Structured version   Visualization version   GIF version

Theorem tgqioo 22511
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
Assertion
Ref Expression
tgqioo (topGen‘ran (,)) = 𝑄

Proof of Theorem tgqioo
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
2 imassrn 5436 . . 3 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
3 ioof 12213 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6002 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 simpll 789 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*)
7 elioo1 12157 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦)))
87biimpa 501 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦))
98simp1d 1071 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*)
108simp2d 1072 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧)
11 qbtwnxr 11974 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑧 ∈ ℝ*𝑥 < 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
126, 9, 10, 11syl3anc 1323 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
13 simplr 791 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*)
148simp3d 1073 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦)
15 qbtwnxr 11974 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧 < 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
169, 13, 14, 15syl3anc 1323 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
17 reeanv 3097 . . . . . . . . . 10 (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)))
18 df-ov 6607 . . . . . . . . . . . . . 14 (𝑢(,)𝑣) = ((,)‘⟨𝑢, 𝑣⟩)
19 opelxpi 5108 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
20193ad2ant2 1081 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
21 ffun 6005 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
223, 21ax-mp 5 . . . . . . . . . . . . . . . 16 Fun (,)
23 qssre 11742 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ
24 ressxr 10027 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
2523, 24sstri 3592 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℝ*
26 xpss12 5186 . . . . . . . . . . . . . . . . . 18 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2725, 25, 26mp2an 707 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
283fdmi 6009 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
2927, 28sseqtr4i 3617 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ⊆ dom (,)
30 funfvima2 6447 . . . . . . . . . . . . . . . 16 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ))))
3122, 29, 30mp2an 707 . . . . . . . . . . . . . . 15 (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3220, 31syl 17 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3318, 32syl5eqel 2702 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)))
3493ad2ant1 1080 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ ℝ*)
35 simp3lr 1131 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 < 𝑧)
36 simp3rl 1132 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 < 𝑣)
37 simp2l 1085 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℚ)
3825, 37sseldi 3581 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℝ*)
39 simp2r 1086 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℚ)
4025, 39sseldi 3581 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℝ*)
41 elioo1 12157 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ*𝑣 ∈ ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4238, 40, 41syl2anc 692 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4334, 35, 36, 42mpbir3and 1243 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣))
4463ad2ant1 1080 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 ∈ ℝ*)
45 simp3ll 1130 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 < 𝑢)
46 xrltle 11926 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑢 ∈ ℝ*) → (𝑥 < 𝑢𝑥𝑢))
4744, 38, 46syl2anc 692 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥 < 𝑢𝑥𝑢))
4845, 47mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥𝑢)
49 iooss1 12152 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑥𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
5044, 48, 49syl2anc 692 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
51133ad2ant1 1080 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑦 ∈ ℝ*)
52 simp3rr 1133 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 < 𝑦)
53 xrltle 11926 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑣 < 𝑦𝑣𝑦))
5440, 51, 53syl2anc 692 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑣 < 𝑦𝑣𝑦))
5552, 54mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣𝑦)
56 iooss2 12153 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑣𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5751, 55, 56syl2anc 692 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5850, 57sstrd 3593 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))
59 eleq2 2687 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑧𝑤𝑧 ∈ (𝑢(,)𝑣)))
60 sseq1 3605 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))
6159, 60anbi12d 746 . . . . . . . . . . . . . 14 (𝑤 = (𝑢(,)𝑣) → ((𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))))
6261rspcev 3295 . . . . . . . . . . . . 13 (((𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)) ∧ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6333, 43, 58, 62syl12anc 1321 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
64633exp 1261 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))))
6564rexlimdvv 3030 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6617, 65syl5bir 233 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6712, 16, 66mp2and 714 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6867ralrimiva 2960 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
69 qtopbas 22473 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
70 eltg2b 20674 . . . . . . . 8 (((,) “ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
7169, 70ax-mp 5 . . . . . . 7 ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
7268, 71sylibr 224 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))))
7372rgen2a 2971 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))
74 ffnov 6717 . . . . 5 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))))
755, 73, 74mpbir2an 954 . . . 4 (,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ)))
76 frn 6010 . . . 4 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ))))
7775, 76ax-mp 5 . . 3 ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))
78 2basgen 20705 . . 3 ((((,) “ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))) → (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,)))
792, 77, 78mp2an 707 . 2 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,))
801, 79eqtr2i 2644 1 (topGen‘ran (,)) = 𝑄
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3555  𝒫 cpw 4130  cop 4154   class class class wbr 4613   × cxp 5072  dom cdm 5074  ran crn 5075  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  *cxr 10017   < clt 10018  cle 10019  cq 11732  (,)cioo 12117  topGenctg 16019  TopBasesctb 20620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-ioo 12121  df-topgen 16025  df-bases 20622
This theorem is referenced by:  re2ndc  22512  opnmblALT  23277  mbfimaopnlem  23328  tgqioo2  39182
  Copyright terms: Public domain W3C validator