MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqioo Structured version   Visualization version   GIF version

Theorem tgqioo 22824
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
Assertion
Ref Expression
tgqioo (topGen‘ran (,)) = 𝑄

Proof of Theorem tgqioo
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2 𝑄 = (topGen‘((,) “ (ℚ × ℚ)))
2 imassrn 5635 . . 3 ((,) “ (ℚ × ℚ)) ⊆ ran (,)
3 ioof 12484 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 6206 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
6 simpll 807 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 ∈ ℝ*)
7 elioo1 12428 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 ∈ (𝑥(,)𝑦) ↔ (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦)))
87biimpa 502 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (𝑧 ∈ ℝ*𝑥 < 𝑧𝑧 < 𝑦))
98simp1d 1137 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 ∈ ℝ*)
108simp2d 1138 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑥 < 𝑧)
11 qbtwnxr 12244 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑧 ∈ ℝ*𝑥 < 𝑧) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
126, 9, 10, 11syl3anc 1477 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧))
13 simplr 809 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑦 ∈ ℝ*)
148simp3d 1139 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → 𝑧 < 𝑦)
15 qbtwnxr 12244 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧 < 𝑦) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
169, 13, 14, 15syl3anc 1477 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦))
17 reeanv 3245 . . . . . . . . . 10 (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) ↔ (∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)))
18 df-ov 6817 . . . . . . . . . . . . . 14 (𝑢(,)𝑣) = ((,)‘⟨𝑢, 𝑣⟩)
19 opelxpi 5305 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
20193ad2ant2 1129 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ))
21 ffun 6209 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
223, 21ax-mp 5 . . . . . . . . . . . . . . . 16 Fun (,)
23 qssre 12011 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℝ
24 ressxr 10295 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
2523, 24sstri 3753 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℝ*
26 xpss12 5281 . . . . . . . . . . . . . . . . . 18 ((ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ*) → (ℚ × ℚ) ⊆ (ℝ* × ℝ*))
2725, 25, 26mp2an 710 . . . . . . . . . . . . . . . . 17 (ℚ × ℚ) ⊆ (ℝ* × ℝ*)
283fdmi 6213 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
2927, 28sseqtr4i 3779 . . . . . . . . . . . . . . . 16 (ℚ × ℚ) ⊆ dom (,)
30 funfvima2 6657 . . . . . . . . . . . . . . . 16 ((Fun (,) ∧ (ℚ × ℚ) ⊆ dom (,)) → (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ))))
3122, 29, 30mp2an 710 . . . . . . . . . . . . . . 15 (⟨𝑢, 𝑣⟩ ∈ (ℚ × ℚ) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3220, 31syl 17 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ((,)‘⟨𝑢, 𝑣⟩) ∈ ((,) “ (ℚ × ℚ)))
3318, 32syl5eqel 2843 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)))
3493ad2ant1 1128 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ ℝ*)
35 simp3lr 1312 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 < 𝑧)
36 simp3rl 1313 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 < 𝑣)
37 simp2l 1242 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℚ)
3825, 37sseldi 3742 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑢 ∈ ℝ*)
39 simp2r 1243 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℚ)
4025, 39sseldi 3742 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 ∈ ℝ*)
41 elioo1 12428 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ*𝑣 ∈ ℝ*) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4238, 40, 41syl2anc 696 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑧 ∈ (𝑢(,)𝑣) ↔ (𝑧 ∈ ℝ*𝑢 < 𝑧𝑧 < 𝑣)))
4334, 35, 36, 42mpbir3and 1428 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑧 ∈ (𝑢(,)𝑣))
4463ad2ant1 1128 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 ∈ ℝ*)
45 simp3ll 1311 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥 < 𝑢)
46 xrltle 12195 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑢 ∈ ℝ*) → (𝑥 < 𝑢𝑥𝑢))
4744, 38, 46syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥 < 𝑢𝑥𝑢))
4845, 47mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑥𝑢)
49 iooss1 12423 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑥𝑢) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
5044, 48, 49syl2anc 696 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑣))
51133ad2ant1 1128 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑦 ∈ ℝ*)
52 simp3rr 1314 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣 < 𝑦)
53 xrltle 12195 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑣 < 𝑦𝑣𝑦))
5440, 51, 53syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑣 < 𝑦𝑣𝑦))
5552, 54mpd 15 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → 𝑣𝑦)
56 iooss2 12424 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑣𝑦) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5751, 55, 56syl2anc 696 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑥(,)𝑣) ⊆ (𝑥(,)𝑦))
5850, 57sstrd 3754 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))
59 eleq2 2828 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑧𝑤𝑧 ∈ (𝑢(,)𝑣)))
60 sseq1 3767 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢(,)𝑣) → (𝑤 ⊆ (𝑥(,)𝑦) ↔ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦)))
6159, 60anbi12d 749 . . . . . . . . . . . . . 14 (𝑤 = (𝑢(,)𝑣) → ((𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)) ↔ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))))
6261rspcev 3449 . . . . . . . . . . . . 13 (((𝑢(,)𝑣) ∈ ((,) “ (ℚ × ℚ)) ∧ (𝑧 ∈ (𝑢(,)𝑣) ∧ (𝑢(,)𝑣) ⊆ (𝑥(,)𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6333, 43, 58, 62syl12anc 1475 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) ∧ (𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) ∧ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦))) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
64633exp 1113 . . . . . . . . . . 11 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((𝑢 ∈ ℚ ∧ 𝑣 ∈ ℚ) → (((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))))
6564rexlimdvv 3175 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → (∃𝑢 ∈ ℚ ∃𝑣 ∈ ℚ ((𝑥 < 𝑢𝑢 < 𝑧) ∧ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6617, 65syl5bir 233 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ((∃𝑢 ∈ ℚ (𝑥 < 𝑢𝑢 < 𝑧) ∧ ∃𝑣 ∈ ℚ (𝑧 < 𝑣𝑣 < 𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
6712, 16, 66mp2and 717 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑧 ∈ (𝑥(,)𝑦)) → ∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
6867ralrimiva 3104 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
69 qtopbas 22784 . . . . . . . 8 ((,) “ (ℚ × ℚ)) ∈ TopBases
70 eltg2b 20985 . . . . . . . 8 (((,) “ (ℚ × ℚ)) ∈ TopBases → ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦))))
7169, 70ax-mp 5 . . . . . . 7 ((𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∀𝑧 ∈ (𝑥(,)𝑦)∃𝑤 ∈ ((,) “ (ℚ × ℚ))(𝑧𝑤𝑤 ⊆ (𝑥(,)𝑦)))
7268, 71sylibr 224 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ))))
7372rgen2a 3115 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))
74 ffnov 6930 . . . . 5 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (topGen‘((,) “ (ℚ × ℚ)))))
755, 73, 74mpbir2an 993 . . . 4 (,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ)))
76 frn 6214 . . . 4 ((,):(ℝ* × ℝ*)⟶(topGen‘((,) “ (ℚ × ℚ))) → ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ))))
7775, 76ax-mp 5 . . 3 ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))
78 2basgen 21016 . . 3 ((((,) “ (ℚ × ℚ)) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘((,) “ (ℚ × ℚ)))) → (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,)))
792, 77, 78mp2an 710 . 2 (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘ran (,))
801, 79eqtr2i 2783 1 (topGen‘ran (,)) = 𝑄
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  wss 3715  𝒫 cpw 4302  cop 4327   class class class wbr 4804   × cxp 5264  dom cdm 5266  ran crn 5267  cima 5269  Fun wfun 6043   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  cr 10147  *cxr 10285   < clt 10286  cle 10287  cq 12001  (,)cioo 12388  topGenctg 16320  TopBasesctb 20971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-ioo 12392  df-topgen 16326  df-bases 20972
This theorem is referenced by:  re2ndc  22825  opnmblALT  23591  mbfimaopnlem  23641  tgqioo2  40295
  Copyright terms: Public domain W3C validator