MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqtop Structured version   Visualization version   GIF version

Theorem tgqtop 22322
Description: An injection maps generated topologies to each other. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
tgqtop ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((topGen‘𝐽) qTop 𝐹) = (topGen‘(𝐽 qTop 𝐹)))

Proof of Theorem tgqtop
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6629 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
2 f1ofun 6619 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋 → Fun 𝐹)
31, 2syl 17 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌 → Fun 𝐹)
43ad2antlr 725 . . . . . . 7 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → Fun 𝐹)
5 simpr 487 . . . . . . . 8 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → 𝑥𝑌)
6 df-rn 5568 . . . . . . . . 9 ran 𝐹 = dom 𝐹
7 f1ofo 6624 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
87ad2antlr 725 . . . . . . . . . 10 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → 𝐹:𝑋onto𝑌)
9 forn 6595 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
108, 9syl 17 . . . . . . . . 9 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → ran 𝐹 = 𝑌)
116, 10syl5eqr 2872 . . . . . . . 8 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → dom 𝐹 = 𝑌)
125, 11sseqtrrd 4010 . . . . . . 7 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → 𝑥 ⊆ dom 𝐹)
13 funimass4 6732 . . . . . . 7 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → ((𝐹𝑥) ⊆ (𝐽 ∩ 𝒫 (𝐹𝑥)) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))))
144, 12, 13syl2anc 586 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ (𝐽 ∩ 𝒫 (𝐹𝑥)) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))))
15 dfss3 3958 . . . . . . 7 (𝑥 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 𝑦 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥))
16 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥))
1716elin1d 4177 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐽 qTop 𝐹))
18 qtopcmp.1 . . . . . . . . . . . . . . . . . 18 𝑋 = 𝐽
1918elqtop2 22311 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑧 ∈ (𝐽 qTop 𝐹) ↔ (𝑧𝑌 ∧ (𝐹𝑧) ∈ 𝐽)))
207, 19sylan2 594 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑧 ∈ (𝐽 qTop 𝐹) ↔ (𝑧𝑌 ∧ (𝐹𝑧) ∈ 𝐽)))
2120ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝑧 ∈ (𝐽 qTop 𝐹) ↔ (𝑧𝑌 ∧ (𝐹𝑧) ∈ 𝐽)))
2217, 21mpbid 234 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝑧𝑌 ∧ (𝐹𝑧) ∈ 𝐽))
2322simprd 498 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ 𝐽)
2416elin2d 4178 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑧 ∈ 𝒫 𝑥)
2524elpwid 4552 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑧𝑥)
26 imass2 5967 . . . . . . . . . . . . . . 15 (𝑧𝑥 → (𝐹𝑧) ⊆ (𝐹𝑥))
2725, 26syl 17 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝐹𝑧) ⊆ (𝐹𝑥))
2823, 27elpwd 4549 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ 𝒫 (𝐹𝑥))
2923, 28elind 4173 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)))
30 simp-4r 782 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝐹:𝑋1-1-onto𝑌)
3130, 1syl 17 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝐹:𝑌1-1-onto𝑋)
32 f1ofn 6618 . . . . . . . . . . . . . 14 (𝐹:𝑌1-1-onto𝑋𝐹 Fn 𝑌)
3331, 32syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝐹 Fn 𝑌)
345ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑥𝑌)
3525, 34sstrd 3979 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑧𝑌)
36 simprr 771 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → 𝑦𝑧)
37 fnfvima 6997 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑌𝑧𝑌𝑦𝑧) → (𝐹𝑦) ∈ (𝐹𝑧))
3833, 35, 36, 37syl3anc 1367 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → (𝐹𝑦) ∈ (𝐹𝑧))
39 eleq2 2903 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑧) → ((𝐹𝑦) ∈ 𝑤 ↔ (𝐹𝑦) ∈ (𝐹𝑧)))
4039rspcev 3625 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ (𝐹𝑧)) → ∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤)
4129, 38, 40syl2anc 586 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦𝑧)) → ∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤)
4241rexlimdvaa 3287 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧 → ∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤))
43 simp-4r 782 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝐹:𝑋1-1-onto𝑌)
44 f1ofun 6619 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋1-1-onto𝑌 → Fun 𝐹)
4543, 44syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → Fun 𝐹)
46 simprl 769 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)))
4746elin2d 4178 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑤 ∈ 𝒫 (𝐹𝑥))
4847elpwid 4552 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑤 ⊆ (𝐹𝑥))
49 funimass2 6439 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑤 ⊆ (𝐹𝑥)) → (𝐹𝑤) ⊆ 𝑥)
5045, 48, 49syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑤) ⊆ 𝑥)
515ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑥𝑌)
5250, 51sstrd 3979 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑤) ⊆ 𝑌)
53 f1of1 6616 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
5443, 53syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝐹:𝑋1-1𝑌)
5546elin1d 4177 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑤𝐽)
56 elssuni 4870 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
5756, 18sseqtrrdi 4020 . . . . . . . . . . . . . . . . 17 (𝑤𝐽𝑤𝑋)
5855, 57syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑤𝑋)
59 f1imacnv 6633 . . . . . . . . . . . . . . . 16 ((𝐹:𝑋1-1𝑌𝑤𝑋) → (𝐹 “ (𝐹𝑤)) = 𝑤)
6054, 58, 59syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹 “ (𝐹𝑤)) = 𝑤)
6160, 55eqeltrd 2915 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹 “ (𝐹𝑤)) ∈ 𝐽)
6218elqtop2 22311 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
637, 62sylan2 594 . . . . . . . . . . . . . . 15 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6463ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6552, 61, 64mpbir2and 711 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑤) ∈ (𝐽 qTop 𝐹))
66 vex 3499 . . . . . . . . . . . . . . 15 𝑥 ∈ V
6766elpw2 5250 . . . . . . . . . . . . . 14 ((𝐹𝑤) ∈ 𝒫 𝑥 ↔ (𝐹𝑤) ⊆ 𝑥)
6850, 67sylibr 236 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑤) ∈ 𝒫 𝑥)
6965, 68elind 4173 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥))
705sselda 3969 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → 𝑦𝑌)
7170adantr 483 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑦𝑌)
72 f1ocnvfv2 7036 . . . . . . . . . . . . . 14 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
7343, 71, 72syl2anc 586 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹‘(𝐹𝑦)) = 𝑦)
74 f1ofn 6618 . . . . . . . . . . . . . . . 16 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
7574adantl 484 . . . . . . . . . . . . . . 15 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 Fn 𝑋)
7675ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝐹 Fn 𝑋)
77 simprr 771 . . . . . . . . . . . . . 14 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹𝑦) ∈ 𝑤)
78 fnfvima 6997 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑤𝑋 ∧ (𝐹𝑦) ∈ 𝑤) → (𝐹‘(𝐹𝑦)) ∈ (𝐹𝑤))
7976, 58, 77, 78syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → (𝐹‘(𝐹𝑦)) ∈ (𝐹𝑤))
8073, 79eqeltrrd 2916 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → 𝑦 ∈ (𝐹𝑤))
81 eleq2 2903 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
8281rspcev 3625 . . . . . . . . . . . 12 (((𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ∧ 𝑦 ∈ (𝐹𝑤)) → ∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧)
8369, 80, 82syl2anc 586 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) ∧ (𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ∧ (𝐹𝑦) ∈ 𝑤)) → ∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧)
8483rexlimdvaa 3287 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤 → ∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧))
8542, 84impbid 214 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧 ↔ ∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤))
86 eluni2 4844 . . . . . . . . 9 (𝑦 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ↔ ∃𝑧 ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)𝑦𝑧)
87 eluni2 4844 . . . . . . . . 9 ((𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥)) ↔ ∃𝑤 ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))(𝐹𝑦) ∈ 𝑤)
8885, 86, 873bitr4g 316 . . . . . . . 8 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (𝑦 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ↔ (𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))))
8988ralbidva 3198 . . . . . . 7 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → (∀𝑦𝑥 𝑦 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))))
9015, 89syl5bb 285 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → (𝑥 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐽 ∩ 𝒫 (𝐹𝑥))))
9114, 90bitr4d 284 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ (𝐽 ∩ 𝒫 (𝐹𝑥)) ↔ 𝑥 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)))
92 eltg 21567 . . . . . 6 (𝐽 ∈ TopBases → ((𝐹𝑥) ∈ (topGen‘𝐽) ↔ (𝐹𝑥) ⊆ (𝐽 ∩ 𝒫 (𝐹𝑥))))
9392ad2antrr 724 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (topGen‘𝐽) ↔ (𝐹𝑥) ⊆ (𝐽 ∩ 𝒫 (𝐹𝑥))))
94 ovex 7191 . . . . . 6 (𝐽 qTop 𝐹) ∈ V
95 eltg 21567 . . . . . 6 ((𝐽 qTop 𝐹) ∈ V → (𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)) ↔ 𝑥 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)))
9694, 95mp1i 13 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → (𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)) ↔ 𝑥 ((𝐽 qTop 𝐹) ∩ 𝒫 𝑥)))
9791, 93, 963bitr4d 313 . . . 4 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (topGen‘𝐽) ↔ 𝑥 ∈ (topGen‘(𝐽 qTop 𝐹))))
9897pm5.32da 581 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥𝑌 ∧ (𝐹𝑥) ∈ (topGen‘𝐽)) ↔ (𝑥𝑌𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)))))
99 tgtopon 21581 . . . . . 6 (𝐽 ∈ TopBases → (topGen‘𝐽) ∈ (TopOn‘ 𝐽))
10099adantr 483 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (topGen‘𝐽) ∈ (TopOn‘ 𝐽))
10118fveq2i 6675 . . . . 5 (TopOn‘𝑋) = (TopOn‘ 𝐽)
102100, 101eleqtrrdi 2926 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (topGen‘𝐽) ∈ (TopOn‘𝑋))
1037adantl 484 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑋onto𝑌)
104 elqtop3 22313 . . . 4 (((topGen‘𝐽) ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ ((topGen‘𝐽) qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ (topGen‘𝐽))))
105102, 103, 104syl2anc 586 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ ((topGen‘𝐽) qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ (topGen‘𝐽))))
106 unitg 21577 . . . . . . . . 9 ((𝐽 qTop 𝐹) ∈ V → (topGen‘(𝐽 qTop 𝐹)) = (𝐽 qTop 𝐹))
10794, 106ax-mp 5 . . . . . . . 8 (topGen‘(𝐽 qTop 𝐹)) = (𝐽 qTop 𝐹)
10818elqtop2 22311 . . . . . . . . . . . 12 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
1097, 108sylan2 594 . . . . . . . . . . 11 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
110 simpl 485 . . . . . . . . . . . 12 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥𝑌)
111 velpw 4546 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
112110, 111sylibr 236 . . . . . . . . . . 11 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌)
113109, 112syl6bi 255 . . . . . . . . . 10 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌))
114113ssrdv 3975 . . . . . . . . 9 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌)
115 sspwuni 5024 . . . . . . . . 9 ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 (𝐽 qTop 𝐹) ⊆ 𝑌)
116114, 115sylib 220 . . . . . . . 8 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝑌)
117107, 116eqsstrid 4017 . . . . . . 7 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (topGen‘(𝐽 qTop 𝐹)) ⊆ 𝑌)
118 sspwuni 5024 . . . . . . 7 ((topGen‘(𝐽 qTop 𝐹)) ⊆ 𝒫 𝑌 (topGen‘(𝐽 qTop 𝐹)) ⊆ 𝑌)
119117, 118sylibr 236 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (topGen‘(𝐽 qTop 𝐹)) ⊆ 𝒫 𝑌)
120119sseld 3968 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ 𝒫 𝑌))
121120, 111syl6ib 253 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)) → 𝑥𝑌))
122121pm4.71rd 565 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)) ↔ (𝑥𝑌𝑥 ∈ (topGen‘(𝐽 qTop 𝐹)))))
12398, 105, 1223bitr4d 313 . 2 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑥 ∈ ((topGen‘𝐽) qTop 𝐹) ↔ 𝑥 ∈ (topGen‘(𝐽 qTop 𝐹))))
124123eqrdv 2821 1 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((topGen‘𝐽) qTop 𝐹) = (topGen‘(𝐽 qTop 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351   Fn wfn 6352  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  topGenctg 16713   qTop cqtop 16778  TopOnctopon 21520  TopBasesctb 21555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-topgen 16719  df-qtop 16782  df-top 21504  df-topon 21521  df-bases 21556
This theorem is referenced by:  imasf1oxms  23101
  Copyright terms: Public domain W3C validator