Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpgrplem Structured version   Visualization version   GIF version

Theorem tgrpgrplem 37767
Description: Lemma for tgrpgrp 37768. (Contributed by NM, 6-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
tgrp.o + = (+g𝐺)
tgrp.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tgrpgrplem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Proof of Theorem tgrpgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tgrpset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tgrpset.g . . . 4 𝐺 = ((TGrp‘𝐾)‘𝑊)
4 eqid 2821 . . . 4 (Base‘𝐺) = (Base‘𝐺)
51, 2, 3, 4tgrpbase 37764 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐺) = 𝑇)
65eqcomd 2827 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝐺))
7 tgrp.o . . 3 + = (+g𝐺)
87a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝐺))
91, 2, 3, 7tgrpov 37766 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
1093expa 1110 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
11103impb 1107 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) = (𝑥𝑦))
121, 2ltrnco 37737 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥𝑦) ∈ 𝑇)
1311, 12eqeltrd 2913 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) ∈ 𝑇)
14 coass 6112 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
15 simpll 763 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝐾 ∈ HL)
16 simplr 765 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑊𝐻)
17 simpr1 1186 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑥𝑇)
18 simpr2 1187 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑦𝑇)
1915, 16, 17, 18, 9syl112anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
2019oveq1d 7160 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) + 𝑧))
21 simpl 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221, 17, 18, 12syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥𝑦) ∈ 𝑇)
23 simpr3 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑧𝑇)
241, 2, 3, 7tgrpov 37766 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ((𝑥𝑦) ∈ 𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2515, 16, 22, 23, 24syl112anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2620, 25eqtrd 2856 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
271, 2, 3, 7tgrpov 37766 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2815, 16, 18, 23, 27syl112anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2928oveq2d 7161 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦𝑧)))
301, 2ltrnco 37737 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝑇𝑧𝑇) → (𝑦𝑧) ∈ 𝑇)
3121, 18, 23, 30syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦𝑧) ∈ 𝑇)
321, 2, 3, 7tgrpov 37766 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇 ∧ (𝑦𝑧) ∈ 𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3315, 16, 17, 31, 32syl112anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3429, 33eqtrd 2856 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3514, 26, 343eqtr4a 2882 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 tgrp.b . . 3 𝐵 = (Base‘𝐾)
3736, 1, 2idltrn 37168 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
38 simpll 763 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝐾 ∈ HL)
39 simplr 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑊𝐻)
4037adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
41 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
421, 2, 3, 7tgrpov 37766 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇𝑥𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4338, 39, 40, 41, 42syl112anc 1366 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4436, 1, 2ltrn1o 37142 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥:𝐵1-1-onto𝐵)
45 f1of 6609 . . . 4 (𝑥:𝐵1-1-onto𝐵𝑥:𝐵𝐵)
46 fcoi2 6547 . . . 4 (𝑥:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4744, 45, 463syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4843, 47eqtrd 2856 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥)
491, 2ltrncnv 37164 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
501, 2, 3, 7tgrpov 37766 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑥𝑇)) → (𝑥 + 𝑥) = (𝑥𝑥))
5138, 39, 49, 41, 50syl112anc 1366 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = (𝑥𝑥))
52 f1ococnv1 6637 . . . 4 (𝑥:𝐵1-1-onto𝐵 → (𝑥𝑥) = ( I ↾ 𝐵))
5344, 52syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥𝑥) = ( I ↾ 𝐵))
5451, 53eqtrd 2856 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = ( I ↾ 𝐵))
556, 8, 13, 35, 37, 48, 49, 54isgrpd 18065 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   I cid 5453  ccnv 5548  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  Basecbs 16473  +gcplusg 16555  Grpcgrp 18043  HLchlt 36368  LHypclh 37002  LTrncltrn 37119  TGrpctgrp 37760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 35971
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-undef 7930  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-0g 16705  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-grp 18046  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-llines 36516  df-lplanes 36517  df-lvols 36518  df-lines 36519  df-psubsp 36521  df-pmap 36522  df-padd 36814  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123  df-trl 37177  df-tgrp 37761
This theorem is referenced by:  tgrpgrp  37768
  Copyright terms: Public domain W3C validator