MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum2 Structured version   Visualization version   GIF version

Theorem tmdgsum2 21805
Description: For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
tmdgsum2.t · = (.g𝐺)
tmdgsum2.1 (𝜑𝐺 ∈ CMnd)
tmdgsum2.2 (𝜑𝐺 ∈ TopMnd)
tmdgsum2.a (𝜑𝐴 ∈ Fin)
tmdgsum2.u (𝜑𝑈𝐽)
tmdgsum2.x (𝜑𝑋𝐵)
tmdgsum2.3 (𝜑 → ((#‘𝐴) · 𝑋) ∈ 𝑈)
Assertion
Ref Expression
tmdgsum2 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Distinct variable groups:   𝑢,𝑓,𝐴   𝑓,𝐽,𝑢   𝑓,𝑋,𝑢   𝐵,𝑓,𝑢   𝑓,𝐺,𝑢   𝑈,𝑓,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑓)   · (𝑢,𝑓)

Proof of Theorem tmdgsum2
Dummy variables 𝑔 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . . . . 7 (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓))
21mptpreima 5590 . . . . . 6 ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}
3 tmdgsum2.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4 tmdgsum2.2 . . . . . . . 8 (𝜑𝐺 ∈ TopMnd)
5 tmdgsum2.a . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 tmdgsum.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
7 tmdgsum.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
86, 7tmdgsum 21804 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
93, 4, 5, 8syl3anc 1323 . . . . . . 7 (𝜑 → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
10 tmdgsum2.u . . . . . . 7 (𝜑𝑈𝐽)
11 cnima 20974 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈𝐽) → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
129, 10, 11syl2anc 692 . . . . . 6 (𝜑 → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
132, 12syl5eqelr 2709 . . . . 5 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽 ^ko 𝒫 𝐴))
146, 7tmdtopon 21790 . . . . . . . 8 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
15 topontop 20636 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
164, 14, 153syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
17 xkopt 21363 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1816, 5, 17syl2anc 692 . . . . . 6 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
19 fnconstg 6052 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴)
204, 14, 193syl 18 . . . . . . 7 (𝜑 → (𝐴 × {𝐽}) Fn 𝐴)
21 eqid 2626 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2221ptval 21278 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
235, 20, 22syl2anc 692 . . . . . 6 (𝜑 → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2418, 23eqtrd 2660 . . . . 5 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2513, 24eleqtrd 2706 . . . 4 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
26 tmdgsum2.x . . . . . . 7 (𝜑𝑋𝐵)
27 fconst6g 6053 . . . . . . 7 (𝑋𝐵 → (𝐴 × {𝑋}):𝐴𝐵)
2826, 27syl 17 . . . . . 6 (𝜑 → (𝐴 × {𝑋}):𝐴𝐵)
29 fvex 6160 . . . . . . . 8 (Base‘𝐺) ∈ V
307, 29eqeltri 2700 . . . . . . 7 𝐵 ∈ V
31 elmapg 7816 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3230, 5, 31sylancr 694 . . . . . 6 (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3328, 32mpbird 247 . . . . 5 (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴))
34 fconstmpt 5128 . . . . . . . 8 (𝐴 × {𝑋}) = (𝑘𝐴𝑋)
3534oveq2i 6616 . . . . . . 7 (𝐺 Σg (𝐴 × {𝑋})) = (𝐺 Σg (𝑘𝐴𝑋))
36 cmnmnd 18124 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
373, 36syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
38 tmdgsum2.t . . . . . . . . 9 · = (.g𝐺)
397, 38gsumconst 18250 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((#‘𝐴) · 𝑋))
4037, 5, 26, 39syl3anc 1323 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((#‘𝐴) · 𝑋))
4135, 40syl5eq 2672 . . . . . 6 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((#‘𝐴) · 𝑋))
42 tmdgsum2.3 . . . . . 6 (𝜑 → ((#‘𝐴) · 𝑋) ∈ 𝑈)
4341, 42eqeltrd 2704 . . . . 5 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)
44 oveq2 6613 . . . . . . 7 (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋})))
4544eleq1d 2688 . . . . . 6 (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4645elrab 3351 . . . . 5 ((𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ∧ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4733, 43, 46sylanbrc 697 . . . 4 (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})
48 tg2 20675 . . . 4 (({𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
4925, 47, 48syl2anc 692 . . 3 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
50 eleq2 2693 . . . . 5 (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥))
51 sseq1 3610 . . . . 5 (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
5250, 51anbi12d 746 . . . 4 (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5352rexab2 3360 . . 3 (∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5449, 53sylib 208 . 2 (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
55 toponuni 20637 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
564, 14, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐽)
5756ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = 𝐽)
5857ineq1d 3796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) = ( 𝐽 ran 𝑔))
5916ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top)
60 simplrl 799 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴)
61 simplrr 800 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))
62 fvconst2g 6422 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽)
6362eleq2d 2689 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔𝑦) ∈ 𝐽))
6463ralbidva 2984 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6559, 64syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6661, 65mpbid 222 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽)
67 ffnfv 6344 . . . . . . . . . . . . . 14 (𝑔:𝐴𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6860, 66, 67sylanbrc 697 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴𝐽)
69 frn 6012 . . . . . . . . . . . . 13 (𝑔:𝐴𝐽 → ran 𝑔𝐽)
7068, 69syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔𝐽)
715ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin)
72 dffn4 6080 . . . . . . . . . . . . . 14 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
7360, 72sylib 208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴onto→ran 𝑔)
74 fofi 8197 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
7571, 73, 74syl2anc 692 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin)
76 eqid 2626 . . . . . . . . . . . . 13 𝐽 = 𝐽
7776rintopn 20634 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ran 𝑔𝐽 ∧ ran 𝑔 ∈ Fin) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7859, 70, 75, 77syl3anc 1323 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7958, 78eqeltrd 2704 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) ∈ 𝐽)
8026ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋𝐵)
81 fconstmpt 5128 . . . . . . . . . . . . . 14 (𝐴 × {𝑋}) = (𝑦𝐴𝑋)
82 simprl 793 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦))
8381, 82syl5eqelr 2709 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦))
84 mptelixpg 7890 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8571, 84syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8683, 85mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦))
87 eleq2 2693 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑦) → (𝑋𝑧𝑋 ∈ (𝑔𝑦)))
8887ralrn 6319 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8960, 88syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
9086, 89mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋𝑧)
91 elrint 4488 . . . . . . . . . . 11 (𝑋 ∈ (𝐵 ran 𝑔) ↔ (𝑋𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋𝑧))
9280, 90, 91sylanbrc 697 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ran 𝑔))
9330inex1 4764 . . . . . . . . . . . . 13 (𝐵 ran 𝑔) ∈ V
94 ixpconstg 7862 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝐵 ran 𝑔) ∈ V) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
9571, 93, 94sylancl 693 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
96 inss2 3817 . . . . . . . . . . . . . . 15 (𝐵 ran 𝑔) ⊆ ran 𝑔
97 fnfvelrn 6313 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐴𝑦𝐴) → (𝑔𝑦) ∈ ran 𝑔)
98 intss1 4462 . . . . . . . . . . . . . . . 16 ((𝑔𝑦) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑦))
9997, 98syl 17 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝐴𝑦𝐴) → ran 𝑔 ⊆ (𝑔𝑦))
10096, 99syl5ss 3599 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝐴𝑦𝐴) → (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
101100ralrimiva 2965 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → ∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
102 ss2ixp 7866 . . . . . . . . . . . . 13 (∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10360, 101, 1023syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10495, 103eqsstr3d 3624 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦))
105 ssrab 3664 . . . . . . . . . . . . 13 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦𝐴 (𝑔𝑦) ⊆ (𝐵𝑚 𝐴) ∧ ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈))
106105simprbi 480 . . . . . . . . . . . 12 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
107106ad2antll 764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
108 ssralv 3650 . . . . . . . . . . 11 (((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦) → (∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
109104, 107, 108sylc 65 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)
110 eleq2 2693 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (𝑋𝑢𝑋 ∈ (𝐵 ran 𝑔)))
111 oveq1 6612 . . . . . . . . . . . . 13 (𝑢 = (𝐵 ran 𝑔) → (𝑢𝑚 𝐴) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
112111raleqdv 3138 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
113110, 112anbi12d 746 . . . . . . . . . . 11 (𝑢 = (𝐵 ran 𝑔) → ((𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
114113rspcev 3300 . . . . . . . . . 10 (((𝐵 ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
11579, 92, 109, 114syl12anc 1321 . . . . . . . . 9 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
116115ex 450 . . . . . . . 8 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
1171163adantr3 1220 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
118 eleq2 2693 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦)))
119 sseq1 3610 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
120118, 119anbi12d 746 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
121120imbi1d 331 . . . . . . 7 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
122117, 121syl5ibrcom 237 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
123122expimpd 628 . . . . 5 (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
124123exlimdv 1863 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
125124impd 447 . . 3 (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
126125exlimdv 1863 . 2 (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
12754, 126mpd 15 1 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wral 2912  wrex 2913  {crab 2916  Vcvv 3191  cdif 3557  cin 3559  wss 3560  𝒫 cpw 4135  {csn 4153   cuni 4407   cint 4445  cmpt 4678   × cxp 5077  ccnv 5078  ran crn 5080  cima 5082   Fn wfn 5845  wf 5846  ontowfo 5848  cfv 5850  (class class class)co 6605  𝑚 cmap 7803  Xcixp 7853  Fincfn 7900  #chash 13054  Basecbs 15776  TopOpenctopn 15998  topGenctg 16014  tcpt 16015   Σg cgsu 16017  Mndcmnd 17210  .gcmg 17456  CMndccmn 18109  Topctop 20612  TopOnctopon 20613   Cn ccn 20933   ^ko cxko 21269  TopMndctmd 21779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-rest 15999  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-mre 16162  df-mrc 16163  df-acs 16165  df-plusf 17157  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cn 20936  df-cnp 20937  df-cmp 21095  df-tx 21270  df-xko 21271  df-tmd 21781
This theorem is referenced by:  tsmsxp  21863
  Copyright terms: Public domain W3C validator