MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp Structured version   Visualization version   GIF version

Theorem tngngp 22368
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
Assertion
Ref Expression
tngngp (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngngp.x . . . . 5 𝑋 = (Base‘𝐺)
3 eqid 2621 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
41, 2, 3tngngp2 22366 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
54simprbda 652 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
6 simplr 791 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑇 ∈ NrmGrp)
7 simpr 477 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥𝑋)
8 fvex 6158 . . . . . . . . . . . 12 (Base‘𝐺) ∈ V
92, 8eqeltri 2694 . . . . . . . . . . 11 𝑋 ∈ V
10 reex 9971 . . . . . . . . . . 11 ℝ ∈ V
11 fex2 7068 . . . . . . . . . . 11 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
129, 10, 11mp3an23 1413 . . . . . . . . . 10 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
1312ad2antrr 761 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 ∈ V)
141, 2tngbas 22355 . . . . . . . . 9 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
1513, 14syl 17 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑋 = (Base‘𝑇))
167, 15eleqtrd 2700 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥 ∈ (Base‘𝑇))
17 eqid 2621 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2621 . . . . . . . 8 (norm‘𝑇) = (norm‘𝑇)
19 eqid 2621 . . . . . . . 8 (0g𝑇) = (0g𝑇)
2017, 18, 19nmeq0 22332 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
216, 16, 20syl2anc 692 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
225adantr 481 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
23 simpll 789 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁:𝑋⟶ℝ)
241, 2, 10tngnm 22365 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
2522, 23, 24syl2anc 692 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 = (norm‘𝑇))
2625fveq1d 6150 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
2726eqeq1d 2623 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0))
28 tngngp.z . . . . . . . . 9 0 = (0g𝐺)
291, 28tng0 22357 . . . . . . . 8 (𝑁 ∈ V → 0 = (0g𝑇))
3013, 29syl 17 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 0 = (0g𝑇))
3130eqeq2d 2631 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 = 0𝑥 = (0g𝑇)))
3221, 27, 313bitr4d 300 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
33 simpllr 798 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑇 ∈ NrmGrp)
3416adantr 481 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥 ∈ (Base‘𝑇))
3515eleq2d 2684 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑦𝑋𝑦 ∈ (Base‘𝑇)))
3635biimpa 501 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (Base‘𝑇))
37 eqid 2621 . . . . . . . . 9 (-g𝑇) = (-g𝑇)
3817, 18, 37nmmtri 22336 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
3933, 34, 36, 38syl3anc 1323 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
40 tngngp.m . . . . . . . . . . 11 = (-g𝐺)
412, 15syl5eqr 2669 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (Base‘𝐺) = (Base‘𝑇))
42 eqid 2621 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
431, 42tngplusg 22356 . . . . . . . . . . . . 13 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
4413, 43syl 17 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (+g𝐺) = (+g𝑇))
4541, 44grpsubpropd 17441 . . . . . . . . . . 11 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (-g𝐺) = (-g𝑇))
4640, 45syl5eq 2667 . . . . . . . . . 10 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → = (-g𝑇))
4746oveqd 6621 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 𝑦) = (𝑥(-g𝑇)𝑦))
4825, 47fveq12d 6154 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
4948adantr 481 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
5025fveq1d 6150 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑦) = ((norm‘𝑇)‘𝑦))
5126, 50oveq12d 6622 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5251adantr 481 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5339, 49, 523brtr4d 4645 . . . . . 6 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5453ralrimiva 2960 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5532, 54jca 554 . . . 4 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
5655ralrimiva 2960 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
575, 56jca 554 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
58 simprl 793 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝐺 ∈ Grp)
59 simpl 473 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑁:𝑋⟶ℝ)
60 simpl 473 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6160ralimi 2947 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6261ad2antll 764 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
63 fveq2 6148 . . . . . . 7 (𝑥 = 𝑎 → (𝑁𝑥) = (𝑁𝑎))
6463eqeq1d 2623 . . . . . 6 (𝑥 = 𝑎 → ((𝑁𝑥) = 0 ↔ (𝑁𝑎) = 0))
65 eqeq1 2625 . . . . . 6 (𝑥 = 𝑎 → (𝑥 = 0𝑎 = 0 ))
6664, 65bibi12d 335 . . . . 5 (𝑥 = 𝑎 → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
6766rspccva 3294 . . . 4 ((∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
6862, 67sylan 488 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
69 simpr 477 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
7069ralimi 2947 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
7170ad2antll 764 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
72 oveq1 6611 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 𝑦) = (𝑎 𝑦))
7372fveq2d 6152 . . . . . . 7 (𝑥 = 𝑎 → (𝑁‘(𝑥 𝑦)) = (𝑁‘(𝑎 𝑦)))
7463oveq1d 6619 . . . . . . 7 (𝑥 = 𝑎 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑦)))
7573, 74breq12d 4626 . . . . . 6 (𝑥 = 𝑎 → ((𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
76 oveq2 6612 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 𝑦) = (𝑎 𝑏))
7776fveq2d 6152 . . . . . . 7 (𝑦 = 𝑏 → (𝑁‘(𝑎 𝑦)) = (𝑁‘(𝑎 𝑏)))
78 fveq2 6148 . . . . . . . 8 (𝑦 = 𝑏 → (𝑁𝑦) = (𝑁𝑏))
7978oveq2d 6620 . . . . . . 7 (𝑦 = 𝑏 → ((𝑁𝑎) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑏)))
8077, 79breq12d 4626 . . . . . 6 (𝑦 = 𝑏 → ((𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏))))
8175, 80rspc2va 3307 . . . . 5 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8281ancoms 469 . . . 4 ((∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8371, 82sylan 488 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
841, 2, 40, 28, 58, 59, 68, 83tngngpd 22367 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑇 ∈ NrmGrp)
8557, 84impbida 876 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880   + caddc 9883  cle 10019  Basecbs 15781  +gcplusg 15862  distcds 15871  0gc0g 16021  Grpcgrp 17343  -gcsg 17345  Metcme 19651  normcnm 22291  NrmGrpcngp 22292   toNrmGrp ctng 22293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-tset 15881  df-ds 15885  df-rest 16004  df-topn 16005  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-tng 22299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator