MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnrg Structured version   Visualization version   GIF version

Theorem tngnrg 23277
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnrg.t 𝑇 = (𝑅 toNrmGrp 𝐹)
tngnrg.a 𝐴 = (AbsVal‘𝑅)
Assertion
Ref Expression
tngnrg (𝐹𝐴𝑇 ∈ NrmRing)

Proof of Theorem tngnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngnrg.a . . . . 5 𝐴 = (AbsVal‘𝑅)
21abvrcl 19586 . . . 4 (𝐹𝐴𝑅 ∈ Ring)
3 ringgrp 19296 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
42, 3syl 17 . . 3 (𝐹𝐴𝑅 ∈ Grp)
5 tngnrg.t . . . . 5 𝑇 = (𝑅 toNrmGrp 𝐹)
6 eqid 2821 . . . . 5 (-g𝑅) = (-g𝑅)
75, 6tngds 23251 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) = (dist‘𝑇))
8 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1, 6abvmet 23179 . . . 4 (𝐹𝐴 → (𝐹 ∘ (-g𝑅)) ∈ (Met‘(Base‘𝑅)))
107, 9eqeltrrd 2914 . . 3 (𝐹𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))
111, 8abvf 19588 . . . 4 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
12 eqid 2821 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
135, 8, 12tngngp2 23255 . . . 4 (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
1411, 13syl 17 . . 3 (𝐹𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅)))))
154, 10, 14mpbir2and 711 . 2 (𝐹𝐴𝑇 ∈ NrmGrp)
16 reex 10622 . . . . . 6 ℝ ∈ V
175, 8, 16tngnm 23254 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇))
184, 11, 17syl2anc 586 . . . 4 (𝐹𝐴𝐹 = (norm‘𝑇))
19 eqidd 2822 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑅))
205, 8tngbas 23244 . . . . . 6 (𝐹𝐴 → (Base‘𝑅) = (Base‘𝑇))
21 eqid 2821 . . . . . . . 8 (+g𝑅) = (+g𝑅)
225, 21tngplusg 23245 . . . . . . 7 (𝐹𝐴 → (+g𝑅) = (+g𝑇))
2322oveqdr 7178 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑇)𝑦))
24 eqid 2821 . . . . . . . 8 (.r𝑅) = (.r𝑅)
255, 24tngmulr 23247 . . . . . . 7 (𝐹𝐴 → (.r𝑅) = (.r𝑇))
2625oveqdr 7178 . . . . . 6 ((𝐹𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑇)𝑦))
2719, 20, 23, 26abvpropd 19607 . . . . 5 (𝐹𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇))
281, 27syl5eq 2868 . . . 4 (𝐹𝐴𝐴 = (AbsVal‘𝑇))
2918, 28eleq12d 2907 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3029ibi 269 . 2 (𝐹𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇))
31 eqid 2821 . . 3 (norm‘𝑇) = (norm‘𝑇)
32 eqid 2821 . . 3 (AbsVal‘𝑇) = (AbsVal‘𝑇)
3331, 32isnrg 23263 . 2 (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇)))
3415, 30, 33sylanbrc 585 1 (𝐹𝐴𝑇 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ccom 5554  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  distcds 16568  Grpcgrp 18097  -gcsg 18099  Ringcrg 19291  AbsValcabv 19581  Metcmet 20525  normcnm 23180  NrmGrpcngp 23181   toNrmGrp ctng 23182  NrmRingcnrg 23183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-seq 13364  df-exp 13424  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-mulr 16573  df-tset 16578  df-ds 16581  df-rest 16690  df-topn 16691  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mgp 19234  df-ur 19246  df-ring 19293  df-abv 19582  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-xms 22924  df-ms 22925  df-nm 23186  df-ngp 23187  df-tng 23188  df-nrg 23189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator