Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmeet Structured version   Visualization version   GIF version

Theorem topmeet 33712
Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmeet ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topmeet
StepHypRef Expression
1 topmtcl 33711 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
2 inss2 4205 . . . . . . 7 (𝒫 𝑋 𝑆) ⊆ 𝑆
3 intss1 4890 . . . . . . 7 (𝑗𝑆 𝑆𝑗)
42, 3sstrid 3977 . . . . . 6 (𝑗𝑆 → (𝒫 𝑋 𝑆) ⊆ 𝑗)
54rgen 3148 . . . . 5 𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗
6 sseq1 3991 . . . . . . 7 (𝑘 = (𝒫 𝑋 𝑆) → (𝑘𝑗 ↔ (𝒫 𝑋 𝑆) ⊆ 𝑗))
76ralbidv 3197 . . . . . 6 (𝑘 = (𝒫 𝑋 𝑆) → (∀𝑗𝑆 𝑘𝑗 ↔ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
87elrab 3679 . . . . 5 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ ((𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
95, 8mpbiran2 708 . . . 4 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
101, 9sylibr 236 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
11 elssuni 4867 . . 3 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
1210, 11syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
13 toponuni 21521 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
14 eqimss2 4023 . . . . . . . . 9 (𝑋 = 𝑘 𝑘𝑋)
1513, 14syl 17 . . . . . . . 8 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
16 sspwuni 5021 . . . . . . . 8 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
1715, 16sylibr 236 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
18173ad2ant2 1130 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ 𝒫 𝑋)
19 simp3 1134 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → ∀𝑗𝑆 𝑘𝑗)
20 ssint 4891 . . . . . . 7 (𝑘 𝑆 ↔ ∀𝑗𝑆 𝑘𝑗)
2119, 20sylibr 236 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 𝑆)
2218, 21ssind 4208 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ (𝒫 𝑋 𝑆))
23 velpw 4543 . . . . 5 (𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆) ↔ 𝑘 ⊆ (𝒫 𝑋 𝑆))
2422, 23sylibr 236 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆))
2524rabssdv 4050 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆))
26 sspwuni 5021 . . 3 ({𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆) ↔ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2725, 26sylib 220 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2812, 27eqssd 3983 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cin 3934  wss 3935  𝒫 cpw 4538   cuni 4837   cint 4875  cfv 6354  TopOnctopon 21517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-mre 16856  df-top 21501  df-topon 21518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator