Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmtcl Structured version   Visualization version   GIF version

Theorem topmtcl 31362
 Description: The meet of a collection of topologies on 𝑋 is again a topology on 𝑋. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmtcl ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))

Proof of Theorem topmtcl
StepHypRef Expression
1 toponmre 20610 . 2 (𝑋𝑉 → (TopOn‘𝑋) ∈ (Moore‘𝒫 𝑋))
2 mrerintcl 15972 . 2 (((TopOn‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
31, 2sylan 486 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 1938   ∩ cin 3443   ⊆ wss 3444  𝒫 cpw 4011  ∩ cint 4308  ‘cfv 5689  Moorecmre 15957  TopOnctopon 20421 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-int 4309  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-iota 5653  df-fun 5691  df-fv 5697  df-mre 15961  df-top 20424  df-topon 20426 This theorem is referenced by:  topmeet  31363
 Copyright terms: Public domain W3C validator