MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnex Structured version   Visualization version   GIF version

Theorem topnex 21606
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7483; an alternate proof uses indiscrete topologies (see indistop 21612) and the analogue of pwnex 7483 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7481). (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 7483 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 3127 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 distop 21605 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
43elv 3501 . . . . . . 7 𝒫 𝑥 ∈ Top
5 eleq1 2902 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
64, 5mpbiri 260 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
76exlimiv 1931 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87abssi 4048 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
9 ssexg 5229 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
108, 9mpan 688 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
112, 10mto 199 . 2 ¬ Top ∈ V
1211nelir 3128 1 Top ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wnel 3125  Vcvv 3496  wss 3938  𝒫 cpw 4541  Topctop 21503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543  df-sn 4570  df-pr 4572  df-uni 4841  df-iun 4923  df-top 21504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator