MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   GIF version

Theorem topnval 16710
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnval (𝐽t 𝐵) = (TopOpen‘𝑊)

Proof of Theorem topnval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . . 6 (𝑤 = 𝑊 → (TopSet‘𝑤) = (TopSet‘𝑊))
2 topnval.2 . . . . . 6 𝐽 = (TopSet‘𝑊)
31, 2syl6eqr 2876 . . . . 5 (𝑤 = 𝑊 → (TopSet‘𝑤) = 𝐽)
4 fveq2 6672 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 topnval.1 . . . . . 6 𝐵 = (Base‘𝑊)
64, 5syl6eqr 2876 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
73, 6oveq12d 7176 . . . 4 (𝑤 = 𝑊 → ((TopSet‘𝑤) ↾t (Base‘𝑤)) = (𝐽t 𝐵))
8 df-topn 16699 . . . 4 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
9 ovex 7191 . . . 4 (𝐽t 𝐵) ∈ V
107, 8, 9fvmpt 6770 . . 3 (𝑊 ∈ V → (TopOpen‘𝑊) = (𝐽t 𝐵))
1110eqcomd 2829 . 2 (𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
12 0rest 16705 . . 3 (∅ ↾t 𝐵) = ∅
13 fvprc 6665 . . . . 5 𝑊 ∈ V → (TopSet‘𝑊) = ∅)
142, 13syl5eq 2870 . . . 4 𝑊 ∈ V → 𝐽 = ∅)
1514oveq1d 7173 . . 3 𝑊 ∈ V → (𝐽t 𝐵) = (∅ ↾t 𝐵))
16 fvprc 6665 . . 3 𝑊 ∈ V → (TopOpen‘𝑊) = ∅)
1712, 15, 163eqtr4a 2884 . 2 𝑊 ∈ V → (𝐽t 𝐵) = (TopOpen‘𝑊))
1811, 17pm2.61i 184 1 (𝐽t 𝐵) = (TopOpen‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  cfv 6357  (class class class)co 7158  Basecbs 16485  TopSetcts 16573  t crest 16696  TopOpenctopn 16697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-rest 16698  df-topn 16699
This theorem is referenced by:  topnid  16711  topnpropd  16712  efmndtopn  18050  oppgtopn  18483  symgtopn  18536  mgptopn  19250  resstopn  21796  prdstopn  22238  tuslem  22878  xrge0tsms  23444  om1opn  23642  xrge0tsmsd  30694  xrge0tmdALT  31191
  Copyright terms: Public domain W3C validator