MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Visualization version   GIF version

Theorem torsubg 18378
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
torsubg (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))

Proof of Theorem torsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5595 . . . 4 (𝑂 “ ℕ) ⊆ dom 𝑂
2 eqid 2724 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 torsubg.1 . . . . . 6 𝑂 = (od‘𝐺)
42, 3odf 18077 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
54fdmi 6165 . . . 4 dom 𝑂 = (Base‘𝐺)
61, 5sseqtri 3743 . . 3 (𝑂 “ ℕ) ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ⊆ (Base‘𝐺))
8 ablgrp 18319 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9 eqid 2724 . . . . . 6 (0g𝐺) = (0g𝐺)
102, 9grpidcl 17572 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
118, 10syl 17 . . . 4 (𝐺 ∈ Abel → (0g𝐺) ∈ (Base‘𝐺))
123, 9od1 18097 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
138, 12syl 17 . . . . 5 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) = 1)
14 1nn 11144 . . . . 5 1 ∈ ℕ
1513, 14syl6eqel 2811 . . . 4 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) ∈ ℕ)
16 ffn 6158 . . . . . 6 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
174, 16ax-mp 5 . . . . 5 𝑂 Fn (Base‘𝐺)
18 elpreima 6452 . . . . 5 (𝑂 Fn (Base‘𝐺) → ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ)))
1917, 18ax-mp 5 . . . 4 ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ))
2011, 15, 19sylanbrc 701 . . 3 (𝐺 ∈ Abel → (0g𝐺) ∈ (𝑂 “ ℕ))
21 ne0i 4029 . . 3 ((0g𝐺) ∈ (𝑂 “ ℕ) → (𝑂 “ ℕ) ≠ ∅)
2220, 21syl 17 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ≠ ∅)
238ad2antrr 764 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Grp)
246sseli 3705 . . . . . . . 8 (𝑥 ∈ (𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺))
2524ad2antlr 765 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺))
266sseli 3705 . . . . . . . 8 (𝑦 ∈ (𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺))
2726adantl 473 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺))
28 eqid 2724 . . . . . . . 8 (+g𝐺) = (+g𝐺)
292, 28grpcl 17552 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
3023, 25, 27, 29syl3anc 1439 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
31 0nnn 11165 . . . . . . . . 9 ¬ 0 ∈ ℕ
322, 3odcl 18076 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (Base‘𝐺) → (𝑂𝑥) ∈ ℕ0)
3325, 32syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ0)
3433nn0zd 11593 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℤ)
352, 3odcl 18076 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Base‘𝐺) → (𝑂𝑦) ∈ ℕ0)
3627, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ0)
3736nn0zd 11593 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℤ)
3834, 37gcdcld 15353 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℕ0)
3938nn0cnd 11466 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℂ)
4039mul02d 10347 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) = 0)
4140breq1d 4770 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ 0 ∥ ((𝑂𝑥) · (𝑂𝑦))))
4234, 37zmulcld 11601 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ)
43 0dvds 15125 . . . . . . . . . . . 12 (((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4442, 43syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4541, 44bitrd 268 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
46 elpreima 6452 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ)))
4717, 46ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ))
4847simprbi 483 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑂 “ ℕ) → (𝑂𝑥) ∈ ℕ)
4948ad2antlr 765 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
50 elpreima 6452 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ)))
5117, 50ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ))
5251simprbi 483 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑂 “ ℕ) → (𝑂𝑦) ∈ ℕ)
5352adantl 473 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ)
5449, 53nnmulcld 11181 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ)
55 eleq1 2791 . . . . . . . . . . 11 (((𝑂𝑥) · (𝑂𝑦)) = 0 → (((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ ↔ 0 ∈ ℕ))
5654, 55syl5ibcom 235 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (((𝑂𝑥) · (𝑂𝑦)) = 0 → 0 ∈ ℕ))
5745, 56sylbid 230 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) → 0 ∈ ℕ))
5831, 57mtoi 190 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
59 simpll 807 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Abel)
603, 2, 28odadd1 18372 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
6159, 25, 27, 60syl3anc 1439 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
62 oveq1 6772 . . . . . . . . . 10 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) = (0 · ((𝑂𝑥) gcd (𝑂𝑦))))
6362breq1d 4770 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6461, 63syl5ibcom 235 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6558, 64mtod 189 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0)
662, 3odcl 18076 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
6730, 66syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
68 elnn0 11407 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6967, 68sylib 208 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7069ord 391 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7165, 70mt3d 140 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)
72 elpreima 6452 . . . . . . 7 (𝑂 Fn (Base‘𝐺) → ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)))
7317, 72ax-mp 5 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ))
7430, 71, 73sylanbrc 701 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
7574ralrimiva 3068 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
76 eqid 2724 . . . . . . 7 (invg𝐺) = (invg𝐺)
772, 76grpinvcl 17589 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
788, 24, 77syl2an 495 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
793, 76, 2odinv 18099 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
808, 24, 79syl2an 495 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
8148adantl 473 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
8280, 81eqeltrd 2803 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)
83 elpreima 6452 . . . . . 6 (𝑂 Fn (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)))
8417, 83ax-mp 5 . . . . 5 (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ))
8578, 82, 84sylanbrc 701 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ))
8675, 85jca 555 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
8786ralrimiva 3068 . 2 (𝐺 ∈ Abel → ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
882, 28, 76issubg2 17731 . . 3 (𝐺 ∈ Grp → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
898, 88syl 17 . 2 (𝐺 ∈ Abel → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
907, 22, 87, 89mpbir3and 1382 1 (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  wral 3014  wss 3680  c0 4023   class class class wbr 4760  ccnv 5217  dom cdm 5218  cima 5221   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  0cc0 10049  1c1 10050   · cmul 10054  cn 11133  0cn0 11405  cz 11490  cdvds 15103   gcd cgcd 15339  Basecbs 15980  +gcplusg 16064  0gc0g 16223  Grpcgrp 17544  invgcminusg 17545  SubGrpcsubg 17710  odcod 18065  Abelcabl 18315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-dvds 15104  df-gcd 15340  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-0g 16225  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-minusg 17548  df-sbg 17549  df-mulg 17663  df-subg 17713  df-od 18069  df-cmn 18316  df-abl 18317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator