Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Visualization version   GIF version

Theorem tpeq123d 4390
 Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
tpeq123d.2 (𝜑𝐶 = 𝐷)
tpeq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
tpeq123d (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21tpeq1d 4387 . 2 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸})
3 tpeq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43tpeq2d 4388 . 2 (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸})
5 tpeq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65tpeq3d 4389 . 2 (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹})
72, 4, 63eqtrd 2762 1 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1596  {ctp 4289 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-v 3306  df-un 3685  df-sn 4286  df-pr 4288  df-tp 4290 This theorem is referenced by:  fz0tp  12555  fz0to4untppr  12557  fzo0to3tp  12669  fzo1to4tp  12671  prdsval  16238  imasval  16294  fucval  16740  fucpropd  16759  setcval  16849  catcval  16868  estrcval  16886  xpcval  16939  symgval  17920  psrval  19485  om1val  22951  ldualset  34832  erngfset  36506  erngfset-rN  36514  dvafset  36711  dvaset  36712  dvhfset  36788  dvhset  36789  hlhilset  37645  rabren3dioph  37798  mendval  38172  nnsum4primesodd  42111  nnsum4primesoddALTV  42112  rngcvalALTV  42388  ringcvalALTV  42434
 Copyright terms: Public domain W3C validator