MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqd Structured version   Visualization version   GIF version

Theorem tposeqd 7300
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypothesis
Ref Expression
tposeqd.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
tposeqd (𝜑 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeqd
StepHypRef Expression
1 tposeqd.1 . 2 (𝜑𝐹 = 𝐺)
2 tposeq 7299 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2syl 17 1 (𝜑 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  tpos ctpos 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-mpt 4675  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-res 5086  df-tpos 7297
This theorem is referenced by:  oppcval  16294  oppchomfval  16295  oppccofval  16297  oppchomfpropd  16307  oppcmon  16319  oppgval  17698  oppgplusfval  17699  oppglsm  17978  opprval  18545  opprmulfval  18546  mattposvs  20180  mattpos1  20181  mamutpos  20183  mattposm  20184  madulid  20370
  Copyright terms: Public domain W3C validator