MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpres Structured version   Visualization version   GIF version

Theorem tpres 6349
Description: An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
tpres.t (𝜑𝑇 = {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
tpres.b (𝜑𝐵𝑉)
tpres.c (𝜑𝐶𝑉)
tpres.e (𝜑𝐸𝑉)
tpres.f (𝜑𝐹𝑉)
tpres.1 (𝜑𝐵𝐴)
tpres.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
tpres (𝜑 → (𝑇 ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})

Proof of Theorem tpres
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5040 . 2 (𝑇 ↾ (V ∖ {𝐴})) = (𝑇 ∩ ((V ∖ {𝐴}) × V))
2 elin 3757 . . . 4 (𝑥 ∈ (𝑇 ∩ ((V ∖ {𝐴}) × V)) ↔ (𝑥𝑇𝑥 ∈ ((V ∖ {𝐴}) × V)))
3 elxp 5045 . . . . . 6 (𝑥 ∈ ((V ∖ {𝐴}) × V) ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)))
43anbi2i 725 . . . . 5 ((𝑥𝑇𝑥 ∈ ((V ∖ {𝐴}) × V)) ↔ (𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))))
5 tpres.t . . . . . . . . 9 (𝜑𝑇 = {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
65eleq2d 2672 . . . . . . . 8 (𝜑 → (𝑥𝑇𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
7 vex 3175 . . . . . . . . . . . . 13 𝑥 ∈ V
87eltp 4176 . . . . . . . . . . . 12 (𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ↔ (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
9 eldifsn 4259 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (V ∖ {𝐴}) ↔ (𝑎 ∈ V ∧ 𝑎𝐴))
10 eqeq1 2613 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 = ⟨𝐴, 𝐷⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐷⟩))
1110adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥 = ⟨𝑎, 𝑏⟩) → (𝑥 = ⟨𝐴, 𝐷⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐷⟩))
12 vex 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
13 vex 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑏 ∈ V
1412, 13opth 4865 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐷⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐷))
15 eqneqall 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝐴 → (𝑎𝐴 → (𝑏 = 𝐷 → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))))
1615com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎𝐴 → (𝑎 = 𝐴 → (𝑏 = 𝐷 → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))))
1716impd 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎𝐴 → ((𝑎 = 𝐴𝑏 = 𝐷) → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
1814, 17syl5bi 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴 → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐷⟩ → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
1918adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥 = ⟨𝑎, 𝑏⟩) → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐷⟩ → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
2011, 19sylbid 228 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐴𝑥 = ⟨𝑎, 𝑏⟩) → (𝑥 = ⟨𝐴, 𝐷⟩ → (𝜑 → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
2120impd 445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑥 = ⟨𝑎, 𝑏⟩) → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
2221ex 448 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
2322adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ V ∧ 𝑎𝐴) → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
249, 23sylbi 205 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (V ∖ {𝐴}) → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
2524adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V) → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
2625impcom 444 . . . . . . . . . . . . . . . . 17 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
2726com12 32 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
2827exlimdvv 1848 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨𝐴, 𝐷⟩ ∧ 𝜑) → (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
2928ex 448 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝐴, 𝐷⟩ → (𝜑 → (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))))
3029impd 445 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐴, 𝐷⟩ → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
31 orc 398 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝐵, 𝐸⟩ → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
3231a1d 25 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐵, 𝐸⟩ → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
33 olc 397 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝐶, 𝐹⟩ → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
3433a1d 25 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐶, 𝐹⟩ → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
3530, 32, 343jaoi 1382 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
368, 35sylbi 205 . . . . . . . . . . 11 (𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
377elpr 4145 . . . . . . . . . . 11 (𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ↔ (𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
3836, 37syl6ibr 240 . . . . . . . . . 10 (𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → ((𝜑 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
3938expd 450 . . . . . . . . 9 (𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → (𝜑 → (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})))
4039com12 32 . . . . . . . 8 (𝜑 → (𝑥 ∈ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})))
416, 40sylbid 228 . . . . . . 7 (𝜑 → (𝑥𝑇 → (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) → 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})))
4241impd 445 . . . . . 6 (𝜑 → ((𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) → 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
43 3mix2 1223 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐵, 𝐸⟩ → (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
44 3mix3 1224 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐶, 𝐹⟩ → (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
4543, 44jaoi 392 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) → (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
4645adantr 479 . . . . . . . . . . 11 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩))
476, 8syl6bb 274 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑇 ↔ (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
4847adantl 480 . . . . . . . . . . 11 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → (𝑥𝑇 ↔ (𝑥 = ⟨𝐴, 𝐷⟩ ∨ 𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩)))
4946, 48mpbird 245 . . . . . . . . . 10 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → 𝑥𝑇)
50 tpres.b . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑉)
51 elex 3184 . . . . . . . . . . . . . . . 16 (𝐵𝑉𝐵 ∈ V)
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ V)
53 tpres.1 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
54 tpres.e . . . . . . . . . . . . . . . 16 (𝜑𝐸𝑉)
55 elex 3184 . . . . . . . . . . . . . . . 16 (𝐸𝑉𝐸 ∈ V)
5654, 55syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ V)
5752, 53, 56jca31 554 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V))
5857anim2i 590 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ 𝜑) → (𝑥 = ⟨𝐵, 𝐸⟩ ∧ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V)))
59 opeq12 4336 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝐵𝑏 = 𝐸) → ⟨𝑎, 𝑏⟩ = ⟨𝐵, 𝐸⟩)
6059eqeq2d 2619 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐵𝑏 = 𝐸) → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐵, 𝐸⟩))
61 eleq1 2675 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐵 → (𝑎 ∈ V ↔ 𝐵 ∈ V))
62 neeq1 2843 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐵 → (𝑎𝐴𝐵𝐴))
6361, 62anbi12d 742 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝐵 → ((𝑎 ∈ V ∧ 𝑎𝐴) ↔ (𝐵 ∈ V ∧ 𝐵𝐴)))
64 eleq1 2675 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐸 → (𝑏 ∈ V ↔ 𝐸 ∈ V))
6563, 64bi2anan9 912 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐵𝑏 = 𝐸) → (((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V) ↔ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V)))
6660, 65anbi12d 742 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐵𝑏 = 𝐸) → ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)) ↔ (𝑥 = ⟨𝐵, 𝐸⟩ ∧ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V))))
6766spc2egv 3267 . . . . . . . . . . . . . . 15 ((𝐵𝑉𝐸𝑉) → ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
6850, 54, 67syl2anc 690 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
6968adantl 480 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ 𝜑) → ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ ((𝐵 ∈ V ∧ 𝐵𝐴) ∧ 𝐸 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
7058, 69mpd 15 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐵, 𝐸⟩ ∧ 𝜑) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)))
71 tpres.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
72 elex 3184 . . . . . . . . . . . . . . . 16 (𝐶𝑉𝐶 ∈ V)
7371, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ V)
74 tpres.2 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐴)
75 tpres.f . . . . . . . . . . . . . . . 16 (𝜑𝐹𝑉)
76 elex 3184 . . . . . . . . . . . . . . . 16 (𝐹𝑉𝐹 ∈ V)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
7873, 74, 77jca31 554 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V))
7978anim2i 590 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ 𝜑) → (𝑥 = ⟨𝐶, 𝐹⟩ ∧ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V)))
80 opeq12 4336 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝐶𝑏 = 𝐹) → ⟨𝑎, 𝑏⟩ = ⟨𝐶, 𝐹⟩)
8180eqeq2d 2619 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐶𝑏 = 𝐹) → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐶, 𝐹⟩))
82 eleq1 2675 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐶 → (𝑎 ∈ V ↔ 𝐶 ∈ V))
83 neeq1 2843 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐶 → (𝑎𝐴𝐶𝐴))
8482, 83anbi12d 742 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝐶 → ((𝑎 ∈ V ∧ 𝑎𝐴) ↔ (𝐶 ∈ V ∧ 𝐶𝐴)))
85 eleq1 2675 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐹 → (𝑏 ∈ V ↔ 𝐹 ∈ V))
8684, 85bi2anan9 912 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐶𝑏 = 𝐹) → (((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V) ↔ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V)))
8781, 86anbi12d 742 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐶𝑏 = 𝐹) → ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)) ↔ (𝑥 = ⟨𝐶, 𝐹⟩ ∧ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V))))
8887spc2egv 3267 . . . . . . . . . . . . . . 15 ((𝐶𝑉𝐹𝑉) → ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
8971, 75, 88syl2anc 690 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
9089adantl 480 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ 𝜑) → ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ ((𝐶 ∈ V ∧ 𝐶𝐴) ∧ 𝐹 ∈ V)) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))))
9179, 90mpd 15 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐶, 𝐹⟩ ∧ 𝜑) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)))
9270, 91jaoian 819 . . . . . . . . . . 11 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)))
939anbi1i 726 . . . . . . . . . . . . 13 ((𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V) ↔ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V))
9493anbi2i 725 . . . . . . . . . . . 12 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) ↔ (𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)))
95942exbii 1764 . . . . . . . . . . 11 (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)) ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ((𝑎 ∈ V ∧ 𝑎𝐴) ∧ 𝑏 ∈ V)))
9692, 95sylibr 222 . . . . . . . . . 10 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)))
9749, 96jca 552 . . . . . . . . 9 (((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) ∧ 𝜑) → (𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))))
9897ex 448 . . . . . . . 8 ((𝑥 = ⟨𝐵, 𝐸⟩ ∨ 𝑥 = ⟨𝐶, 𝐹⟩) → (𝜑 → (𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)))))
9937, 98sylbi 205 . . . . . . 7 (𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → (𝜑 → (𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)))))
10099com12 32 . . . . . 6 (𝜑 → (𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} → (𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V)))))
10142, 100impbid 200 . . . . 5 (𝜑 → ((𝑥𝑇 ∧ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 ∈ (V ∖ {𝐴}) ∧ 𝑏 ∈ V))) ↔ 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
1024, 101syl5bb 270 . . . 4 (𝜑 → ((𝑥𝑇𝑥 ∈ ((V ∖ {𝐴}) × V)) ↔ 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
1032, 102syl5bb 270 . . 3 (𝜑 → (𝑥 ∈ (𝑇 ∩ ((V ∖ {𝐴}) × V)) ↔ 𝑥 ∈ {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}))
104103eqrdv 2607 . 2 (𝜑 → (𝑇 ∩ ((V ∖ {𝐴}) × V)) = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
1051, 104syl5eq 2655 1 (𝜑 → (𝑇 ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3o 1029   = wceq 1474  wex 1694  wcel 1976  wne 2779  Vcvv 3172  cdif 3536  cin 3538  {csn 4124  {cpr 4126  {ctp 4128  cop 4130   × cxp 5026  cres 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-opab 4638  df-xp 5034  df-res 5040
This theorem is referenced by:  estrres  16548
  Copyright terms: Public domain W3C validator