MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tr0 Structured version   Visualization version   GIF version

Theorem tr0 4797
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0 Tr ∅

Proof of Theorem tr0
StepHypRef Expression
1 0ss 4005 . 2 ∅ ⊆ 𝒫 ∅
2 dftr4 4790 . 2 (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅)
31, 2mpbir 221 1 Tr ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3607  c0 3948  𝒫 cpw 4191  Tr wtr 4785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-dif 3610  df-in 3614  df-ss 3621  df-nul 3949  df-pw 4193  df-uni 4469  df-tr 4786
This theorem is referenced by:  ord0  5815  tctr  8654  tc0  8661  r1tr  8677
  Copyright terms: Public domain W3C validator