![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tr0 | Structured version Visualization version GIF version |
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
tr0 | ⊢ Tr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4005 | . 2 ⊢ ∅ ⊆ 𝒫 ∅ | |
2 | dftr4 4790 | . 2 ⊢ (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ Tr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 Tr wtr 4785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-uni 4469 df-tr 4786 |
This theorem is referenced by: ord0 5815 tctr 8654 tc0 8661 r1tr 8677 |
Copyright terms: Public domain | W3C validator |