Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tratrbVD Structured version   Visualization version   GIF version

Theorem tratrbVD 41202
Description: Virtual deduction proof of tratrb 40877. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) 𝐵𝐴)   )
2:1,?: e1a 40968 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
3:1,?: e1a 40968 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
4:1,?: e1a 40968 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
5:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
6:5,?: e2 40972 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝑦   )
7:5,?: e2 40972 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐵   )
8:2,7,4,?: e121 40997 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐴   )
9:2,6,8,?: e122 40994 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐴   )
10:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   𝐵𝑥   )
11:6,7,10,?: e223 40976 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
12:11: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
13:: ¬ (𝑥𝑦𝑦𝐵 𝐵𝑥)
14:12,13,?: e20 41068 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝐵𝑥   )
15:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
16:7,15,?: e23 41096 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑦𝑥   )
17:6,16,?: e23 41096 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
18:17: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
19:: ¬ (𝑥𝑦𝑦𝑥)
20:18,19,?: e20 41068 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝑥 = 𝐵   )
21:3,?: e1a 40968 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴 𝑥𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
22:21,9,4,?: e121 40997 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥 𝑥 = 𝑦)   )
23:22,?: e2 40972 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
24:4,23,?: e12 41065 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
25:14,20,24,?: e222 40977 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐵   )
26:25: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦 𝑦𝐵) → 𝑥𝐵)   )
27:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
28:27,?: e0a 41113 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦) ∧ 𝐵𝐴))
29:28,26: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
30:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
31:30,?: e0a 41113 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
32:31,29: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥 𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
33:32,?: e1a 40968 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
qed:33: ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tratrbVD ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem tratrbVD
StepHypRef Expression
1 hbra1 3222 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
2 alrim3con13v 40874 . . . . 5 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)))
31, 2e0a 41113 . . . 4 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
4 ax-5 1911 . . . . . . 7 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
5 hbra1 3222 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
64, 5hbral 3223 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
7 alrim3con13v 40874 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)))
86, 7e0a 41113 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
9 idn2 40954 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
10 simpl 485 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐵) → 𝑥𝑦)
119, 10e2 40972 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝑦   )
12 simpr 487 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐵) → 𝑦𝐵)
139, 12e2 40972 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑦𝐵   )
14 idn3 40956 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝐵𝑥   ▶   𝐵𝑥   )
15 pm3.2an3 1336 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝐵 → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
1611, 13, 14, 15e223 40976 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
1716in3 40950 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
18 en3lp 9079 . . . . . . . 8 ¬ (𝑥𝑦𝑦𝐵𝐵𝑥)
19 con3 156 . . . . . . . 8 ((𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥)) → (¬ (𝑥𝑦𝑦𝐵𝐵𝑥) → ¬ 𝐵𝑥))
2017, 18, 19e20 41068 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶    ¬ 𝐵𝑥   )
21 idn3 40956 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
22 eleq2 2903 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
2322biimprcd 252 . . . . . . . . . . 11 (𝑦𝐵 → (𝑥 = 𝐵𝑦𝑥))
2413, 21, 23e23 41096 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   𝑦𝑥   )
25 pm3.2 472 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
2611, 24, 25e23 41096 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
2726in3 40950 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
28 en2lp 9071 . . . . . . . 8 ¬ (𝑥𝑦𝑦𝑥)
29 con3 156 . . . . . . . 8 ((𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥)) → (¬ (𝑥𝑦𝑦𝑥) → ¬ 𝑥 = 𝐵))
3027, 28, 29e20 41068 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶    ¬ 𝑥 = 𝐵   )
31 idn1 40915 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   )
32 simp3 1134 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → 𝐵𝐴)
3331, 32e1a 40968 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
34 simp2 1133 . . . . . . . . . . . 12 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3531, 34e1a 40968 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
36 ralcom 3356 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3736biimpi 218 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3835, 37e1a 40968 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
39 simp1 1132 . . . . . . . . . . . 12 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐴)
4031, 39e1a 40968 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
41 trel 5181 . . . . . . . . . . . . 13 (Tr 𝐴 → ((𝑦𝐵𝐵𝐴) → 𝑦𝐴))
4241expd 418 . . . . . . . . . . . 12 (Tr 𝐴 → (𝑦𝐵 → (𝐵𝐴𝑦𝐴)))
4340, 13, 33, 42e121 40997 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑦𝐴   )
44 trel 5181 . . . . . . . . . . . 12 (Tr 𝐴 → ((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4544expd 418 . . . . . . . . . . 11 (Tr 𝐴 → (𝑥𝑦 → (𝑦𝐴𝑥𝐴)))
4640, 11, 43, 45e122 40994 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝐴   )
47 rspsbc2 40875 . . . . . . . . . . 11 (𝐵𝐴 → (𝑥𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
4847com13 88 . . . . . . . . . 10 (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐴 → (𝐵𝐴[𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
4938, 46, 33, 48e121 40997 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
50 equid 2019 . . . . . . . . . . 11 𝑥 = 𝑥
51 sbceq2a 3786 . . . . . . . . . . 11 (𝑥 = 𝑥 → ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
5250, 51ax-mp 5 . . . . . . . . . 10 ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
5352biimpi 218 . . . . . . . . 9 ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
5449, 53e2 40972 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
55 sbcoreleleq 40876 . . . . . . . . 9 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
5655biimpd 231 . . . . . . . 8 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
5733, 54, 56e12 41065 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
58 3ornot23 40850 . . . . . . . 8 ((¬ 𝐵𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵))
5958ex 415 . . . . . . 7 𝐵𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵)))
6020, 30, 57, 59e222 40977 . . . . . 6 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝐵   )
6160in2 40946 . . . . 5 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
628, 61gen11nv 40958 . . . 4 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
633, 62gen11nv 40958 . . 3 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
64 dftr2 5176 . . . 4 (Tr 𝐵 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
6564biimpri 230 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵) → Tr 𝐵)
6663, 65e1a 40968 . 2 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
6766in1 40912 1 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  [wsbc 3774  Tr wtr 5174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-fr 5516  df-vd1 40911  df-vd2 40919  df-vd3 40931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator