MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcfilu Structured version   Visualization version   GIF version

Theorem trcfilu 22905
Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
trcfilu ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem trcfilu
Dummy variables 𝑎 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 simp2l 1195 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (CauFilu𝑈))
3 iscfilu 22899 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
43biimpa 479 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
51, 2, 4syl2anc 586 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
65simpld 497 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐹 ∈ (fBas‘𝑋))
7 simp3 1134 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → 𝐴𝑋)
8 simp2r 1196 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ¬ ∅ ∈ (𝐹t 𝐴))
9 trfbas2 22453 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
109biimpar 480 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝑋) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
116, 7, 8, 10syl21anc 835 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (fBas‘𝐴))
122ad5antr 732 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐹 ∈ (CauFilu𝑈))
131adantr 483 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋))
1413elfvexd 6706 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑋 ∈ V)
157adantr 483 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴𝑋)
1614, 15ssexd 5230 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝐴 ∈ V)
1716ad4antr 730 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝐴 ∈ V)
18 simplr 767 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑎𝐹)
19 elrestr 16704 . . . . . . 7 ((𝐹 ∈ (CauFilu𝑈) ∧ 𝐴 ∈ V ∧ 𝑎𝐹) → (𝑎𝐴) ∈ (𝐹t 𝐴))
2012, 17, 18, 19syl3anc 1367 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎𝐴) ∈ (𝐹t 𝐴))
21 inxp 5705 . . . . . . 7 ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) = ((𝑎𝐴) × (𝑎𝐴))
22 simpr 487 . . . . . . . . 9 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
2322ssrind 4214 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
24 simpllr 774 . . . . . . . 8 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
2523, 24sseqtrrd 4010 . . . . . . 7 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎 × 𝑎) ∩ (𝐴 × 𝐴)) ⊆ 𝑤)
2621, 25eqsstrrid 4018 . . . . . 6 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤)
27 id 22 . . . . . . . . 9 (𝑏 = (𝑎𝐴) → 𝑏 = (𝑎𝐴))
2827sqxpeqd 5589 . . . . . . . 8 (𝑏 = (𝑎𝐴) → (𝑏 × 𝑏) = ((𝑎𝐴) × (𝑎𝐴)))
2928sseq1d 4000 . . . . . . 7 (𝑏 = (𝑎𝐴) → ((𝑏 × 𝑏) ⊆ 𝑤 ↔ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤))
3029rspcev 3625 . . . . . 6 (((𝑎𝐴) ∈ (𝐹t 𝐴) ∧ ((𝑎𝐴) × (𝑎𝐴)) ⊆ 𝑤) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3120, 26, 30syl2anc 586 . . . . 5 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑎𝐹) ∧ (𝑎 × 𝑎) ⊆ 𝑣) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
325simprd 498 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332r19.21bi 3210 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3433ad4ant13 749 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3531, 34r19.29a 3291 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) ∧ 𝑣𝑈) ∧ 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
3616, 16xpexd 7476 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V)
37 simpr 487 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈t (𝐴 × 𝐴)))
38 elrest 16703 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑤 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴))))
3938biimpa 479 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4013, 36, 37, 39syl21anc 835 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑣𝑈 𝑤 = (𝑣 ∩ (𝐴 × 𝐴)))
4135, 40r19.29a 3291 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) ∧ 𝑤 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
4241ralrimiva 3184 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)
43 trust 22840 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
441, 7, 43syl2anc 586 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
45 iscfilu 22899 . . 3 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4644, 45syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → ((𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ ((𝐹t 𝐴) ∈ (fBas‘𝐴) ∧ ∀𝑤 ∈ (𝑈t (𝐴 × 𝐴))∃𝑏 ∈ (𝐹t 𝐴)(𝑏 × 𝑏) ⊆ 𝑤)))
4711, 42, 46mpbir2and 711 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu𝑈) ∧ ¬ ∅ ∈ (𝐹t 𝐴)) ∧ 𝐴𝑋) → (𝐹t 𝐴) ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293   × cxp 5555  cfv 6357  (class class class)co 7158  t crest 16696  fBascfbas 20535  UnifOncust 22810  CauFiluccfilu 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-rest 16698  df-fbas 20544  df-ust 22811  df-cfilu 22898
This theorem is referenced by:  ucnextcn  22915
  Copyright terms: Public domain W3C validator