 Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcleq2lemRP Structured version   Visualization version   GIF version

Theorem trcleq2lemRP 36833
 Description: Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
trcleq2lemRP (𝐴 = 𝐵 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑅𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))

Proof of Theorem trcleq2lemRP
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
21, 1coeq12d 5100 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))
32, 1sseq12d 3501 . 2 (𝐴 = 𝐵 → ((𝐴𝐴) ⊆ 𝐴 ↔ (𝐵𝐵) ⊆ 𝐵))
43cleq2lem 36810 1 (𝐴 = 𝐵 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑅𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 194   ∧ wa 382   = wceq 1474   ⊆ wss 3444   ∘ ccom 4936 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-in 3451  df-ss 3458  df-br 4482  df-opab 4542  df-co 4941 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator