MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclexlem Structured version   Visualization version   GIF version

Theorem trclexlem 13667
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclexlem (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)

Proof of Theorem trclexlem
StepHypRef Expression
1 dmexg 7044 . . 3 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7045 . . 3 (𝑅𝑉 → ran 𝑅 ∈ V)
3 xpexg 6913 . . 3 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 × ran 𝑅) ∈ V)
41, 2, 3syl2anc 692 . 2 (𝑅𝑉 → (dom 𝑅 × ran 𝑅) ∈ V)
5 unexg 6912 . 2 ((𝑅𝑉 ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
64, 5mpdan 701 1 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  Vcvv 3186  cun 3553   × cxp 5072  dom cdm 5074  ran crn 5075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085
This theorem is referenced by:  trclublem  13668  trclfv  13675  cnvtrcl0  37414
  Copyright terms: Public domain W3C validator