Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotr Structured version   Visualization version   GIF version

Theorem trclfvcotr 13684
 Description: The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.)
Assertion
Ref Expression
trclfvcotr (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))

Proof of Theorem trclfvcotr
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 5467 . . . . . . . . . 10 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
2 sp 2051 . . . . . . . . . . 11 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ∀𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
3219.21bbi 2058 . . . . . . . . . 10 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
41, 3sylbi 207 . . . . . . . . 9 ((𝑟𝑟) ⊆ 𝑟 → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
54adantl 482 . . . . . . . 8 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
65a2i 14 . . . . . . 7 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
76alimi 1736 . . . . . 6 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
87ax-gen 1719 . . . . 5 𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
98ax-gen 1719 . . . 4 𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
109ax-gen 1719 . . 3 𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
11 brtrclfv 13677 . . . . . . . 8 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑏 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏)))
12 brtrclfv 13677 . . . . . . . 8 (𝑅𝑉 → (𝑏(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1311, 12anbi12d 746 . . . . . . 7 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))))
14 jcab 906 . . . . . . . . 9 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1514albii 1744 . . . . . . . 8 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ ∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
16 19.26 1795 . . . . . . . 8 (∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1715, 16bitri 264 . . . . . . 7 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1813, 17syl6bbr 278 . . . . . 6 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐))))
19 brtrclfv 13677 . . . . . 6 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))
2018, 19imbi12d 334 . . . . 5 (𝑅𝑉 → (((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2120albidv 1846 . . . 4 (𝑅𝑉 → (∀𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
22212albidv 1848 . . 3 (𝑅𝑉 → (∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2310, 22mpbiri 248 . 2 (𝑅𝑉 → ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
24 cotr 5467 . 2 (((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) ↔ ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
2523, 24sylibr 224 1 (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1478   ∈ wcel 1987   ⊆ wss 3555   class class class wbr 4613   ∘ ccom 5078  ‘cfv 5847  t+ctcl 13658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-iota 5810  df-fun 5849  df-fv 5855  df-trcl 13660 This theorem is referenced by:  trclfvlb2  13685  trclidm  13688  trclfvcotrg  13691
 Copyright terms: Public domain W3C validator