MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotrg Structured version   Visualization version   GIF version

Theorem trclfvcotrg 13691
Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.)
Assertion
Ref Expression
trclfvcotrg ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)

Proof of Theorem trclfvcotrg
StepHypRef Expression
1 trclfvcotr 13684 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
2 fvprc 6142 . . 3 𝑅 ∈ V → (t+‘𝑅) = ∅)
3 0trrel 13654 . . . . 5 (∅ ∘ ∅) ⊆ ∅
43a1i 11 . . . 4 ((t+‘𝑅) = ∅ → (∅ ∘ ∅) ⊆ ∅)
5 id 22 . . . . 5 ((t+‘𝑅) = ∅ → (t+‘𝑅) = ∅)
65, 5coeq12d 5246 . . . 4 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) = (∅ ∘ ∅))
74, 6, 53sstr4d 3627 . . 3 ((t+‘𝑅) = ∅ → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
82, 7syl 17 . 2 𝑅 ∈ V → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
91, 8pm2.61i 176 1 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  c0 3891  ccom 5078  cfv 5847  t+ctcl 13658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-iota 5810  df-fun 5849  df-fv 5855  df-trcl 13660
This theorem is referenced by:  cotrcltrcl  37498  brtrclfv2  37500  frege96d  37522  frege97d  37525  frege98d  37526  frege109d  37530  frege131d  37537
  Copyright terms: Public domain W3C validator