Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclubgNEW Structured version   Visualization version   GIF version

Theorem trclubgNEW 39985
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
trclubgNEW.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
trclubgNEW (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem trclubgNEW
StepHypRef Expression
1 trclubgNEW.rex . . 3 (𝜑𝑅 ∈ V)
21dmexd 7617 . . . 4 (𝜑 → dom 𝑅 ∈ V)
3 rnexg 7616 . . . . 5 (𝑅 ∈ V → ran 𝑅 ∈ V)
41, 3syl 17 . . . 4 (𝜑 → ran 𝑅 ∈ V)
52, 4xpexd 7476 . . 3 (𝜑 → (dom 𝑅 × ran 𝑅) ∈ V)
6 unexg 7474 . . 3 ((𝑅 ∈ V ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
71, 5, 6syl2anc 586 . 2 (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
8 id 22 . . . 4 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → 𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
98, 8coeq12d 5737 . . 3 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → (𝑥𝑥) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
109, 8sseq12d 4002 . 2 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
11 ssun1 4150 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
1211a1i 11 . 2 (𝜑𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
13 cnvssrndm 6124 . . 3 𝑅 ⊆ (ran 𝑅 × dom 𝑅)
14 coundi 6102 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
15 cnvss 5745 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → 𝑅(ran 𝑅 × dom 𝑅))
16 coss2 5729 . . . . . . . 8 (𝑅(ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
1715, 16syl 17 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
18 cocnvcnv2 6113 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅)
19 cnvxp 6016 . . . . . . . 8 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
2019coeq2i 5733 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))
2117, 18, 203sstr3g 4013 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
22 ssequn1 4158 . . . . . 6 (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
2321, 22sylib 220 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
24 coundir 6103 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) = ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 coss1 5728 . . . . . . . . . 10 (𝑅(ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2615, 25syl 17 . . . . . . . . 9 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
27 cocnvcnv1 6112 . . . . . . . . 9 (𝑅 ∘ (dom 𝑅 × ran 𝑅)) = (𝑅 ∘ (dom 𝑅 × ran 𝑅))
2819coeq1i 5732 . . . . . . . . 9 ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
2926, 27, 283sstr3g 4013 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
30 ssequn1 4158 . . . . . . . 8 ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3129, 30sylib 220 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
32 xptrrel 14342 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
33 ssun2 4151 . . . . . . . . 9 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3432, 33sstri 3978 . . . . . . . 8 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3534a1i 11 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3631, 35eqsstrd 4007 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3724, 36eqsstrid 4017 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3823, 37eqsstrd 4007 . . . 4 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3914, 38eqsstrid 4017 . . 3 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4013, 39mp1i 13 . 2 (𝜑 → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
417, 10, 12, 40clublem 39977 1 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2801  Vcvv 3496  cun 3936  wss 3938   cint 4878   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  ccom 5561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569
This theorem is referenced by:  trclubNEW  39986
  Copyright terms: Public domain W3C validator