MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclublem Structured version   Visualization version   GIF version

Theorem trclublem 13663
Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclublem (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclublem
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trclexlem 13662 . 2 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
2 ssun1 3759 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3 relcnv 5466 . . . . . . . . . . . . . 14 Rel 𝑅
4 relssdmrn 5618 . . . . . . . . . . . . . 14 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
53, 4ax-mp 5 . . . . . . . . . . . . 13 𝑅 ⊆ (dom 𝑅 × ran 𝑅)
6 ssequn1 3766 . . . . . . . . . . . . 13 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
75, 6mpbi 220 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
8 cnvun 5501 . . . . . . . . . . . . 13 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅(dom 𝑅 × ran 𝑅))
9 cnvxp 5514 . . . . . . . . . . . . . . 15 (dom 𝑅 × ran 𝑅) = (ran 𝑅 × dom 𝑅)
10 df-rn 5090 . . . . . . . . . . . . . . . 16 ran 𝑅 = dom 𝑅
11 dfdm4 5281 . . . . . . . . . . . . . . . 16 dom 𝑅 = ran 𝑅
1210, 11xpeq12i 5102 . . . . . . . . . . . . . . 15 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
139, 12eqtri 2648 . . . . . . . . . . . . . 14 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1413uneq2i 3747 . . . . . . . . . . . . 13 (𝑅(dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
158, 14eqtri 2648 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
167, 15, 133eqtr4i 2658 . . . . . . . . . . 11 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
1716breqi 4624 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑏(dom 𝑅 × ran 𝑅)𝑎)
18 vex 3194 . . . . . . . . . . 11 𝑏 ∈ V
19 vex 3194 . . . . . . . . . . 11 𝑎 ∈ V
2018, 19brcnv 5270 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏)
2118, 19brcnv 5270 . . . . . . . . . 10 (𝑏(dom 𝑅 × ran 𝑅)𝑎𝑎(dom 𝑅 × ran 𝑅)𝑏)
2217, 20, 213bitr3i 290 . . . . . . . . 9 (𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑎(dom 𝑅 × ran 𝑅)𝑏)
2316breqi 4624 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑐(dom 𝑅 × ran 𝑅)𝑏)
24 vex 3194 . . . . . . . . . . 11 𝑐 ∈ V
2524, 18brcnv 5270 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)
2624, 18brcnv 5270 . . . . . . . . . 10 (𝑐(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)
2723, 25, 263bitr3i 290 . . . . . . . . 9 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐𝑏(dom 𝑅 × ran 𝑅)𝑐)
2822, 27anbi12i 732 . . . . . . . 8 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) ↔ (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
2928biimpi 206 . . . . . . 7 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3029eximi 1759 . . . . . 6 (∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3130ssopab2i 4968 . . . . 5 {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)} ⊆ {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
32 df-co 5088 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)}
33 df-co 5088 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
3431, 32, 333sstr4i 3628 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
35 xptrrel 13648 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
36 ssun2 3760 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3735, 36sstri 3597 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3834, 37sstri 3597 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
39 trcleq2lem 13659 . . . . 5 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4039elabg 3339 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4140biimprd 238 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}))
422, 38, 41mp2ani 713 . 2 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
431, 42syl 17 1 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  {cab 2612  Vcvv 3191  cun 3558  wss 3560   class class class wbr 4618  {copab 4677   × cxp 5077  ccnv 5078  dom cdm 5079  ran crn 5080  ccom 5083  Rel wrel 5084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091
This theorem is referenced by:  trclubi  13664  trclubiOLD  13665  trclubgi  13666  trclubgiOLD  13667  trclub  13668  trclubg  13669
  Copyright terms: Public domain W3C validator