Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trcoss2 Structured version   Visualization version   GIF version

Theorem trcoss2 35718
Description: Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.)
Assertion
Ref Expression
trcoss2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Distinct variable groups:   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)

Proof of Theorem trcoss2
StepHypRef Expression
1 alcom 2159 . . 3 (∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
21albii 1816 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
3 19.23v 1939 . . . 4 (∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
4 eleccossin 35717 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
54el2v 3501 . . . . . . 7 (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
65bicomi 226 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
7 brcoss3 35672 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
87el2v 3501 . . . . . 6 (𝑥𝑅𝑧 ↔ ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅)
96, 8imbi12i 353 . . . . 5 (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
109albii 1816 . . . 4 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦(𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
11 n0 4309 . . . . 5 (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅))
1211imbi1i 352 . . . 4 ((([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅) ↔ (∃𝑦 𝑦 ∈ ([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
133, 10, 123bitr4i 305 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
14132albii 1817 . 2 (∀𝑥𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
152, 14bitri 277 1 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wex 1776  wcel 2110  wne 3016  Vcvv 3494  cin 3934  c0 4290   class class class wbr 5058  ccnv 5548  [cec 8281  ccoss 35447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ec 8285  df-coss 35653
This theorem is referenced by:  eqvrelcoss4  35849
  Copyright terms: Public domain W3C validator