MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Visualization version   GIF version

Theorem trfil3 22424
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))

Proof of Theorem trfil3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 trfil2 22423 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
2 dfral2 3234 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅)
3 nne 3017 . . . . . . . 8 (¬ (𝑣𝐴) ≠ ∅ ↔ (𝑣𝐴) = ∅)
4 filelss 22388 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → 𝑣𝑌)
5 reldisj 4398 . . . . . . . . 9 (𝑣𝑌 → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
64, 5syl 17 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
73, 6syl5bb 284 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → (¬ (𝑣𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
87rexbidva 3293 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
98adantr 481 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
10 difssd 4106 . . . . . 6 (𝐴𝑌 → (𝑌𝐴) ⊆ 𝑌)
11 elfilss 22412 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌𝐴) ⊆ 𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
1210, 11sylan2 592 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
139, 12bitr4d 283 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ (𝑌𝐴) ∈ 𝐿))
1413notbid 319 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
152, 14syl5bb 284 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
161, 15bitrd 280 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  cdif 3930  cin 3932  wss 3933  c0 4288  cfv 6348  (class class class)co 7145  t crest 16682  Filcfil 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-rest 16684  df-fbas 20470  df-fg 20471  df-fil 22382
This theorem is referenced by:  fgtr  22426  trufil  22446  flimrest  22519  fclsrest  22560  cfilres  23826  relcmpcmet  23848
  Copyright terms: Public domain W3C validator