MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopy Structured version   Visualization version   GIF version

Theorem trgcopy 25741
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopy
Dummy variables 𝑗 𝑘 𝑙 𝑞 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 trgcopy.m . . . . . . 7 = (dist‘𝐺)
3 eqid 2651 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
4 trgcopy.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
65ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
76ad2antrr 762 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐺 ∈ TarskiG)
87adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺 ∈ TarskiG)
9 trgcopy.a . . . . . . . . . 10 (𝜑𝐴𝑃)
109ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
1110ad2antrr 762 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
1211ad3antrrr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝑃)
13 trgcopy.b . . . . . . . . . 10 (𝜑𝐵𝑃)
1413ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
1514ad2antrr 762 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
1615ad3antrrr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐵𝑃)
17 trgcopy.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad6antr 777 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐶𝑃)
1918adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑃)
20 trgcopy.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2120ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐷𝑃)
2221ad2antrr 762 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
2322ad3antrrr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐷𝑃)
24 trgcopy.e . . . . . . . . . 10 (𝜑𝐸𝑃)
2524ad2antrr 762 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐸𝑃)
2625ad2antrr 762 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
2726ad3antrrr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝑃)
28 simprl 809 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓𝑃)
29 trgcopy.3 . . . . . . . . 9 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3029ad2antrr 762 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
3130ad5antr 773 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴 𝐵) = (𝐷 𝐸))
32 trgcopy.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
33 trgcopy.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
34 trgcopy.1 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
351, 33, 32, 4, 13, 17, 9, 34ncoltgdim2 25505 . . . . . . . . . 10 (𝜑𝐺DimTarskiG≥2)
3635ad4antr 769 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺DimTarskiG≥2)
3736ad3antrrr 766 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺DimTarskiG≥2)
381, 32, 33, 4, 9, 13, 17, 34ncolne1 25565 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
391, 32, 33, 4, 9, 13, 38tgelrnln 25570 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
4039ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
41 simplr 807 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
421, 33, 32, 5, 40, 41tglnpt 25489 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
4342ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑥𝑃)
4443ad2antrr 762 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝑃)
4544adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝑃)
46 simplr 807 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
4746ad2antrr 762 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑦𝑃)
4847adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑃)
4941ad5antr 773 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐴𝐿𝐵))
5038ad7antr 781 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝐵)
511, 32, 33, 8, 12, 16, 50tglinecom 25575 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
5249, 51eleqtrd 2732 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐵𝐿𝐴))
53 simp-6r 828 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
5433, 8, 53perpln1 25650 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
5540ad5antr 773 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) ∈ ran 𝐿)
561, 2, 32, 33, 8, 54, 55, 53perpcom 25653 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝑥))
571, 33, 32, 4, 13, 17, 9, 34ncolrot2 25503 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
58 ioran 510 . . . . . . . . . . . . . . . . . 18 (¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
5957, 58sylib 208 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
6059simpld 474 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
6160ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
62 nelne2 2920 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
6341, 61, 62syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
6463ad4antr 769 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝐶)
6665necomd 2878 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑥)
671, 32, 33, 8, 19, 45, 66tglinecom 25575 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
6856, 51, 673brtr3d 4716 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑥𝐿𝐶))
691, 2, 32, 33, 8, 16, 12, 52, 19, 68perprag 25663 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐵𝑥𝐶”⟩ ∈ (∟G‘𝐺))
701, 2, 32, 4, 9, 13, 20, 24, 29, 38tgcgrneq 25423 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
7170necomd 2878 . . . . . . . . . . 11 (𝜑𝐸𝐷)
7271ad7antr 781 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝐷)
7370ad4antr 769 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝐸)
7473neneqd 2828 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐷 = 𝐸)
7541orcd 406 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
761, 33, 32, 5, 10, 14, 42, 75colrot2 25500 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝑥𝐿𝐴) ∨ 𝑥 = 𝐴))
771, 33, 32, 5, 42, 10, 14, 76colcom 25498 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
7877ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
79 simpr 476 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
801, 33, 32, 6, 11, 15, 43, 3, 22, 26, 46, 78, 79lnxfr 25506 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐸 ∈ (𝐷𝐿𝑦) ∨ 𝐷 = 𝑦))
811, 33, 32, 6, 22, 46, 26, 80colrot2 25500 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
821, 33, 32, 6, 26, 22, 46, 81colcom 25498 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
8382orcomd 402 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8483ord 391 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (¬ 𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8574, 84mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦 ∈ (𝐷𝐿𝐸))
8685ad3antrrr 766 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐷𝐿𝐸))
871, 32, 33, 8, 27, 23, 48, 72, 86lncom 25562 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐸𝐿𝐷))
88 simprrr 822 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 𝑓) = (𝑥 𝐶))
8988eqcomd 2657 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐶) = (𝑦 𝑓))
901, 2, 32, 8, 45, 19, 48, 28, 89, 65tgcgrneq 25423 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑓)
911, 32, 33, 8, 48, 28, 90tgelrnln 25570 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓) ∈ ran 𝐿)
921, 32, 33, 8, 27, 23, 72tgelrnln 25570 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
93 simpllr 815 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑃)
94 simplr 807 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑃)
95 simprl 809 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
9633, 7, 95perpln2 25651 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝑞𝐿𝑦) ∈ ran 𝐿)
971, 32, 33, 7, 94, 47, 96tglnne 25568 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑦)
9897adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑦)
9998necomd 2878 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1001, 32, 33, 8, 48, 93, 99tgelrnln 25570 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) ∈ ran 𝐿)
10195adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
1021, 32, 33, 8, 27, 23, 72tglinecom 25575 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) = (𝐷𝐿𝐸))
1031, 32, 33, 8, 48, 93, 100tglnne 25568 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1041, 32, 33, 8, 48, 93, 103tglinecom 25575 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) = (𝑞𝐿𝑦))
105101, 102, 1043brtr4d 4717 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑞))
1061, 2, 32, 33, 8, 92, 100, 105perpcom 25653 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞)(⟂G‘𝐺)(𝐸𝐿𝐷))
107 trgcopy.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
108 simprrl 821 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓(𝐾𝑦)𝑞)
1091, 32, 107, 28, 93, 48, 8, 33, 108hlln 25547 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑞𝐿𝑦))
1101, 32, 33, 8, 48, 93, 28, 99, 109lncom 25562 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑦𝐿𝑞))
111110orcd 406 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑦𝐿𝑞) ∨ 𝑦 = 𝑞))
1121, 2, 32, 33, 8, 48, 93, 28, 106, 111, 90colperp 25666 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓)(⟂G‘𝐺)(𝐸𝐿𝐷))
1131, 2, 32, 33, 8, 91, 92, 112perpcom 25653 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑓))
1141, 2, 32, 33, 8, 27, 23, 87, 28, 113perprag 25663 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐸𝑦𝑓”⟩ ∈ (∟G‘𝐺))
11579ad3antrrr 766 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
1161, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 115cgr3simp2 25461 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝑥) = (𝐸 𝑦))
1171, 2, 32, 8, 37, 16, 45, 19, 27, 48, 28, 69, 114, 116, 89hypcgr 25738 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑓))
118 eqid 2651 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
11951, 68eqbrtrd 4707 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
1201, 2, 32, 33, 8, 12, 16, 49, 19, 119perprag 25663 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1211, 2, 32, 33, 118, 8, 12, 45, 19, 120ragcom 25638 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐶𝑥𝐴”⟩ ∈ (∟G‘𝐺))
122102, 113eqbrtrrd 4709 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑦𝐿𝑓))
1231, 2, 32, 33, 8, 23, 27, 86, 28, 122perprag 25663 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐷𝑦𝑓”⟩ ∈ (∟G‘𝐺))
1241, 2, 32, 33, 118, 8, 23, 48, 28, 123ragcom 25638 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝑓𝑦𝐷”⟩ ∈ (∟G‘𝐺))
1251, 2, 32, 8, 45, 19, 48, 28, 89tgcgrcomlr 25420 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝑥) = (𝑓 𝑦))
1261, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 115cgr3simp3 25462 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐴) = (𝑦 𝐷))
1271, 2, 32, 8, 37, 19, 45, 12, 28, 48, 23, 121, 124, 125, 126hypcgr 25738 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝐴) = (𝑓 𝐷))
1281, 2, 3, 8, 12, 16, 19, 23, 27, 28, 31, 117, 127trgcgr 25456 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1291, 32, 33, 4, 20, 24, 70tgelrnln 25570 . . . . . . . . 9 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
130129ad4antr 769 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷𝐿𝐸) ∈ ran 𝐿)
131130ad3antrrr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
132 simpl 472 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑤 = 𝑘)
133 eqidd 2652 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑃 ∖ (𝐷𝐿𝐸)) = (𝑃 ∖ (𝐷𝐿𝐸)))
134132, 133eleq12d 2724 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
135 simpr 476 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑣 = 𝑙)
136135, 133eleq12d 2724 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
137134, 136anbi12d 747 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
138 simpr 476 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗)
139 simpll 805 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑤 = 𝑘)
140 simplr 807 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑣 = 𝑙)
141139, 140oveq12d 6708 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑤𝐼𝑣) = (𝑘𝐼𝑙))
142138, 141eleq12d 2724 . . . . . . . . . 10 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑧 ∈ (𝑤𝐼𝑣) ↔ 𝑗 ∈ (𝑘𝐼𝑙)))
143142cbvrexdva 3208 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣) ↔ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙)))
144137, 143anbi12d 747 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑙) → (((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣)) ↔ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))))
145144cbvopabv 4755 . . . . . . 7 {⟨𝑤, 𝑣⟩ ∣ ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣))} = {⟨𝑘, 𝑙⟩ ∣ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))}
1468adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
14719adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐶𝑃)
14816adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
14912adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
15023adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
15127adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
15228adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓𝑃)
15371ad8antr 785 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝐷)
154 simpr 476 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐷𝐿𝐸))
1551, 32, 33, 146, 151, 150, 152, 153, 154lncom 25562 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐸𝐿𝐷))
156155orcd 406 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝑓 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1571, 33, 32, 146, 151, 150, 152, 156colrot1 25499 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐸 ∈ (𝐷𝐿𝑓) ∨ 𝐷 = 𝑓))
158128adantr 480 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1591, 2, 32, 3, 146, 149, 148, 147, 150, 151, 152, 158trgcgrcom 25468 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐷𝐸𝑓”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1601, 33, 32, 146, 150, 151, 152, 3, 149, 148, 147, 157, 159lnxfr 25506 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1611, 33, 32, 146, 149, 147, 148, 160colrot1 25499 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
1621, 33, 32, 146, 147, 148, 149, 161colcom 25498 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
16334ad8antr 785 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
164162, 163pm2.65da 599 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ¬ 𝑓 ∈ (𝐷𝐿𝐸))
165108, 164jca 553 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓(𝐾𝑦)𝑞 ∧ ¬ 𝑓 ∈ (𝐷𝐿𝐸)))
166109orcd 406 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑞𝐿𝑦) ∨ 𝑞 = 𝑦))
1671, 33, 32, 8, 93, 48, 28, 166colrot2 25500 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 ∈ (𝑓𝐿𝑞) ∨ 𝑓 = 𝑞))
1681, 32, 33, 8, 131, 28, 145, 93, 86, 167, 107colhp 25707 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞 ↔ (𝑓(𝐾𝑦)𝑞 ∧ ¬ 𝑓 ∈ (𝐷𝐿𝐸))))
169165, 168mpbird 247 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞)
170 trgcopy.f . . . . . . . . . 10 (𝜑𝐹𝑃)
171170ad4antr 769 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
172171ad2antrr 762 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐹𝑃)
173172adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐹𝑃)
174 simplrr 818 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
1751, 32, 33, 8, 131, 28, 145, 93, 169, 173, 174hpgtr 25705 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
176128, 175jca 553 . . . . 5 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1771, 32, 107, 47, 44, 18, 7, 94, 2, 97, 64hlcgrex 25556 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))
178176, 177reximddv 3047 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
179 trgcopy.2 . . . . . . . . 9 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
1801, 33, 32, 4, 24, 170, 20, 179ncolrot2 25503 . . . . . . . 8 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
181 ioran 510 . . . . . . . 8 (¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
182180, 181sylib 208 . . . . . . 7 (𝜑 → (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
183182simpld 474 . . . . . 6 (𝜑 → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
184183ad4antr 769 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
1851, 2, 32, 33, 6, 36, 130, 145, 85, 171, 184lnperpex 25740 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑞𝑃 ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
186178, 185r19.29a 3107 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1871, 33, 32, 5, 10, 14, 42, 3, 21, 25, 2, 77, 30lnext 25507 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
188186, 187r19.29a 3107 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1891, 2, 32, 33, 4, 39, 17, 60footex 25658 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
190188, 189r19.29a 3107 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604   class class class wbr 4685  {copab 4745  ran crn 5144  cfv 5926  (class class class)co 6690  2c2 11108  ⟨“cs3 13633  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  DimTarskiGcstrkgld 25378  Itvcitv 25380  LineGclng 25381  cgrGccgrg 25450  hlGchlg 25540  pInvGcmir 25592  ⟂Gcperpg 25635  hpGchpg 25694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkgld 25396  df-trkg 25397  df-cgrg 25451  df-ismt 25473  df-leg 25523  df-hlg 25541  df-mir 25593  df-rag 25634  df-perpg 25636  df-hpg 25695  df-mid 25711  df-lmi 25712
This theorem is referenced by:  trgcopyeu  25743  acopy  25769  cgrg3col4  25779
  Copyright terms: Public domain W3C validator