MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeu Structured version   Visualization version   GIF version

Theorem trgcopyeu 26591
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopyeu (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopyeu
Dummy variables 𝑎 𝑏 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . 3 𝑃 = (Base‘𝐺)
2 trgcopy.m . . 3 = (dist‘𝐺)
3 trgcopy.i . . 3 𝐼 = (Itv‘𝐺)
4 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
5 trgcopy.k . . 3 𝐾 = (hlG‘𝐺)
6 trgcopy.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 trgcopy.a . . 3 (𝜑𝐴𝑃)
8 trgcopy.b . . 3 (𝜑𝐵𝑃)
9 trgcopy.c . . 3 (𝜑𝐶𝑃)
10 trgcopy.d . . 3 (𝜑𝐷𝑃)
11 trgcopy.e . . 3 (𝜑𝐸𝑃)
12 trgcopy.f . . 3 (𝜑𝐹𝑃)
13 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
14 trgcopy.2 . . 3 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
15 trgcopy.3 . . 3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15trgcopy 26589 . 2 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
176ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG)
187ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐴𝑃)
198ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐵𝑃)
209ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐶𝑃)
2110ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐷𝑃)
2211ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐸𝑃)
2312ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐹𝑃)
2413ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2514ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
2615ad5antr 732 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
27 simpl 485 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
2827eleq1d 2897 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
29 simpr 487 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑦 = 𝑏)
3029eleq1d 2897 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
3128, 30anbi12d 632 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
32 simpr 487 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑧 = 𝑡)
33 simpll 765 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑥 = 𝑎)
34 simplr 767 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑦 = 𝑏)
3533, 34oveq12d 7173 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑥𝐼𝑦) = (𝑎𝐼𝑏))
3632, 35eleq12d 2907 . . . . . . . . . 10 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
3736cbvrexdva 3460 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦) ↔ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
3831, 37anbi12d 632 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
3938cbvopabv 5137 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
40 simp-5r 784 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓𝑃)
41 simp-4r 782 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘𝑃)
42 simpllr 774 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
4342simpld 497 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
44 simplr 767 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩)
4542simprd 498 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
46 simpr 487 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
471, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 39, 40, 41, 43, 44, 45, 46trgcopyeulem 26590 . . . . . 6 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓 = 𝑘)
4847anasss 469 . . . . 5 (((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)
4948expl 460 . . . 4 (((𝜑𝑓𝑃) ∧ 𝑘𝑃) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5049anasss 469 . . 3 ((𝜑 ∧ (𝑓𝑃𝑘𝑃)) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5150ralrimivva 3191 . 2 (𝜑 → ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
52 eqidd 2822 . . . . . 6 (𝑓 = 𝑘𝐷 = 𝐷)
53 eqidd 2822 . . . . . 6 (𝑓 = 𝑘𝐸 = 𝐸)
54 id 22 . . . . . 6 (𝑓 = 𝑘𝑓 = 𝑘)
5552, 53, 54s3eqd 14225 . . . . 5 (𝑓 = 𝑘 → ⟨“𝐷𝐸𝑓”⟩ = ⟨“𝐷𝐸𝑘”⟩)
5655breq2d 5077 . . . 4 (𝑓 = 𝑘 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩))
57 breq1 5068 . . . 4 (𝑓 = 𝑘 → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
5856, 57anbi12d 632 . . 3 (𝑓 = 𝑘 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
5958reu4 3721 . 2 (∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)))
6016, 51, 59sylanbrc 585 1 (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  wrex 3139  ∃!wreu 3140  cdif 3932   class class class wbr 5065  {copab 5127  cfv 6354  (class class class)co 7155  ⟨“cs3 14203  Basecbs 16482  distcds 16573  TarskiGcstrkg 26215  Itvcitv 26221  LineGclng 26222  cgrGccgrg 26295  hlGchlg 26385  hpGchpg 26542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-s1 13949  df-s2 14209  df-s3 14210  df-trkgc 26233  df-trkgb 26234  df-trkgcb 26235  df-trkgld 26237  df-trkg 26238  df-cgrg 26296  df-ismt 26318  df-leg 26368  df-hlg 26386  df-mir 26438  df-rag 26479  df-perpg 26481  df-hpg 26543  df-mid 26559  df-lmi 26560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator