MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeu Structured version   Visualization version   GIF version

Theorem trgcopyeu 25416
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopyeu (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopyeu
Dummy variables 𝑎 𝑏 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . 3 𝑃 = (Base‘𝐺)
2 trgcopy.m . . 3 = (dist‘𝐺)
3 trgcopy.i . . 3 𝐼 = (Itv‘𝐺)
4 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
5 trgcopy.k . . 3 𝐾 = (hlG‘𝐺)
6 trgcopy.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 trgcopy.a . . 3 (𝜑𝐴𝑃)
8 trgcopy.b . . 3 (𝜑𝐵𝑃)
9 trgcopy.c . . 3 (𝜑𝐶𝑃)
10 trgcopy.d . . 3 (𝜑𝐷𝑃)
11 trgcopy.e . . 3 (𝜑𝐸𝑃)
12 trgcopy.f . . 3 (𝜑𝐹𝑃)
13 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
14 trgcopy.2 . . 3 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
15 trgcopy.3 . . 3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15trgcopy 25414 . 2 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
176ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG)
187ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐴𝑃)
198ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐵𝑃)
209ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐶𝑃)
2110ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐷𝑃)
2211ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐸𝑃)
2312ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐹𝑃)
2413ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2514ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
2615ad5antr 765 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
27 simpl 471 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
2827eleq1d 2671 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
29 simpr 475 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑦 = 𝑏)
3029eleq1d 2671 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
3128, 30anbi12d 742 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
32 simpr 475 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑧 = 𝑡)
33 simpll 785 . . . . . . . . . . . . 13 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑥 = 𝑎)
34 simplr 787 . . . . . . . . . . . . 13 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑦 = 𝑏)
3533, 34oveq12d 6545 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑥𝐼𝑦) = (𝑎𝐼𝑏))
3632, 35eleq12d 2681 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
3736cbvrexdva 3153 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦) ↔ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
3831, 37anbi12d 742 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
3938cbvopabv 4648 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
40 simp-5r 804 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓𝑃)
41 simp-4r 802 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘𝑃)
42 simpllr 794 . . . . . . . . 9 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
4342simpld 473 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
44 simplr 787 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩)
4542simprd 477 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
46 simpr 475 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
471, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 39, 40, 41, 43, 44, 45, 46trgcopyeulem 25415 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓 = 𝑘)
4847anasss 676 . . . . . 6 (((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)
4948anasss 676 . . . . 5 ((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))) → 𝑓 = 𝑘)
5049ex 448 . . . 4 (((𝜑𝑓𝑃) ∧ 𝑘𝑃) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5150anasss 676 . . 3 ((𝜑 ∧ (𝑓𝑃𝑘𝑃)) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5251ralrimivva 2953 . 2 (𝜑 → ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
53 eqidd 2610 . . . . . 6 (𝑓 = 𝑘𝐷 = 𝐷)
54 eqidd 2610 . . . . . 6 (𝑓 = 𝑘𝐸 = 𝐸)
55 id 22 . . . . . 6 (𝑓 = 𝑘𝑓 = 𝑘)
5653, 54, 55s3eqd 13406 . . . . 5 (𝑓 = 𝑘 → ⟨“𝐷𝐸𝑓”⟩ = ⟨“𝐷𝐸𝑘”⟩)
5756breq2d 4589 . . . 4 (𝑓 = 𝑘 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩))
58 breq1 4580 . . . 4 (𝑓 = 𝑘 → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
5957, 58anbi12d 742 . . 3 (𝑓 = 𝑘 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
6059reu4 3366 . 2 (∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)))
6116, 52, 60sylanbrc 694 1 (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896  ∃!wreu 2897  cdif 3536   class class class wbr 4577  {copab 4636  cfv 5790  (class class class)co 6527  ⟨“cs3 13384  Basecbs 15641  distcds 15723  TarskiGcstrkg 25046  Itvcitv 25052  LineGclng 25053  cgrGccgrg 25123  hlGchlg 25213  hpGchpg 25367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-s3 13391  df-trkgc 25064  df-trkgb 25065  df-trkgcb 25066  df-trkgld 25068  df-trkg 25069  df-cgrg 25124  df-ismt 25146  df-leg 25196  df-hlg 25214  df-mir 25266  df-rag 25307  df-perpg 25309  df-hpg 25368  df-mid 25384  df-lmi 25385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator