Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Structured version   Visualization version   GIF version

Theorem trlcoabs2N 37740
Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l = (le‘𝐾)
trlcoabs.j = (join‘𝐾)
trlcoabs.a 𝐴 = (Atoms‘𝐾)
trlcoabs.h 𝐻 = (LHyp‘𝐾)
trlcoabs.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoabs.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoabs2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
3 simp2l 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 trlcoabs.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 trlcoabs.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 37164 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
71, 3, 6syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
84, 5ltrnco 37737 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
91, 2, 7, 8syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐹) ∈ 𝑇)
10 trlcoabs.l . . . . . 6 = (le‘𝐾)
11 trlcoabs.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrnel 37157 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
13123adant2r 1171 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
14 trlcoabs.j . . . . 5 = (join‘𝐾)
15 eqid 2821 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
16 trlcoabs.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1710, 14, 15, 11, 4, 5, 16trlval2 37181 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
181, 9, 13, 17syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
1918oveq2d 7161 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)))
20 simp1l 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21 simp3l 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2210, 11, 4, 5ltrnat 37158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
231, 3, 21, 22syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
2410, 11, 4, 5ltrnat 37158 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ (𝐹𝑃) ∈ 𝐴) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
251, 9, 23, 24syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
26 eqid 2821 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2726, 14, 11hlatjcl 36385 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
2820, 23, 25, 27syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
29 simp1r 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
3026, 4lhpbase 37016 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3129, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
3210, 14, 11hlatlej1 36393 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3320, 23, 25, 32syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3426, 10, 14, 15, 11atmod3i1 36882 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3520, 23, 28, 31, 33, 34syl131anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3610, 11, 4, 5ltrncoval 37163 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
371, 9, 3, 21, 36syl121anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
38 coass 6112 . . . . . . . 8 ((𝐺𝐹) ∘ 𝐹) = (𝐺 ∘ (𝐹𝐹))
3926, 4, 5ltrn1o 37142 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
401, 3, 39syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
41 f1ococnv1 6637 . . . . . . . . . . 11 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4240, 41syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4342coeq2d 5727 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = (𝐺 ∘ ( I ↾ (Base‘𝐾))))
4426, 4, 5ltrn1o 37142 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 2, 44syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6609 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi1 6546 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4845, 46, 473syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4943, 48eqtrd 2856 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = 𝐺)
5038, 49syl5eq 2868 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹) ∘ 𝐹) = 𝐺)
5150fveq1d 6666 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = (𝐺𝑃))
5237, 51eqtr3d 2858 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) = (𝐺𝑃))
5352oveq2d 7161 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝐺𝑃)))
54 eqid 2821 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
5510, 14, 54, 11, 4lhpjat2 37039 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
561, 13, 55syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
5753, 56oveq12d 7163 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)))
58 hlol 36379 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
5920, 58syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
6010, 11, 4, 5ltrnat 37158 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
611, 2, 21, 60syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
6226, 14, 11hlatjcl 36385 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6320, 23, 61, 62syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6426, 15, 54olm11 36245 . . . 4 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6559, 63, 64syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6657, 65eqtrd 2856 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = ((𝐹𝑃) (𝐺𝑃)))
6719, 35, 663eqtrd 2860 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5058   I cid 5453  ccnv 5548  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  joincjn 17544  meetcmee 17545  1.cp1 17638  OLcol 36192  Atomscatm 36281  HLchlt 36368  LHypclh 37002  LTrncltrn 37119  trLctrl 37176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-riotaBAD 35971
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-undef 7930  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-llines 36516  df-lplanes 36517  df-lvols 36518  df-lines 36519  df-psubsp 36521  df-pmap 36522  df-padd 36814  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123  df-trl 37177
This theorem is referenced by:  cdlemkfid1N  37939
  Copyright terms: Public domain W3C validator