Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlid0 Structured version   Visualization version   GIF version

Theorem trlid0 35781
Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
trlid0.b 𝐵 = (Base‘𝐾)
trlid0.z 0 = (0.‘𝐾)
trlid0.h 𝐻 = (LHyp‘𝐾)
trlid0.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlid0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 )

Proof of Theorem trlid0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2651 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 trlid0.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 35610 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
5 simpl 472 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simpr 476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
7 trlid0.b . . . . 5 𝐵 = (Base‘𝐾)
8 eqid 2651 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
97, 3, 8idltrn 35754 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
109adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
11 eqid 2651 . . . 4 ( I ↾ 𝐵) = ( I ↾ 𝐵)
127, 1, 2, 3, 8ltrnideq 35780 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
135, 10, 6, 12syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
1411, 13mpbii 223 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
15 trlid0.z . . . 4 0 = (0.‘𝐾)
16 trlid0.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
171, 15, 2, 3, 8, 16trl0 35775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (( I ↾ 𝐵)‘𝑝) = 𝑝)) → (𝑅‘( I ↾ 𝐵)) = 0 )
185, 6, 10, 14, 17syl112anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘( I ↾ 𝐵)) = 0 )
194, 18rexlimddv 3064 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685   I cid 5052  cres 5145  cfv 5926  Basecbs 15904  lecple 15995  0.cp0 17084  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764
This theorem is referenced by:  tendoid  36378  tendo0tp  36394  cdlemkid2  36529  cdlemk39s-id  36545  dian0  36645  dihmeetlem4preN  36912
  Copyright terms: Public domain W3C validator