MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlres Structured version   Visualization version   GIF version

Theorem trlres 27484
Description: The restriction 𝐻, 𝑄 of a trail 𝐹, 𝑃 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
trlres.v 𝑉 = (Vtx‘𝐺)
trlres.i 𝐼 = (iEdg‘𝐺)
trlres.d (𝜑𝐹(Trails‘𝐺)𝑃)
trlres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlres.h 𝐻 = (𝐹 prefix 𝑁)
trlres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
trlres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
trlres (𝜑𝐻(Trails‘𝑆)𝑄)

Proof of Theorem trlres
StepHypRef Expression
1 trlres.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlres.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlres.d . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
4 trliswlk 27481 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
53, 4syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
6 trlres.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
7 trlres.s . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
8 trlres.e . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
9 trlres.h . . 3 𝐻 = (𝐹 prefix 𝑁)
10 trlres.q . . 3 𝑄 = (𝑃 ↾ (0...𝑁))
111, 2, 5, 6, 7, 8, 9, 10wlkres 27454 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
121, 2, 3, 6, 9trlreslem 27483 . . 3 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
13 f1of1 6616 . . 3 (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → 𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
14 df-f1 6362 . . . 4 (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐻:(0..^(♯‘𝐻))⟶dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∧ Fun 𝐻))
1514simprbi 499 . . 3 (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → Fun 𝐻)
1612, 13, 153syl 18 . 2 (𝜑 → Fun 𝐻)
17 istrl 27480 . 2 (𝐻(Trails‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ Fun 𝐻))
1811, 16, 17sylanbrc 585 1 (𝜑𝐻(Trails‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114   class class class wbr 5068  ccnv 5556  dom cdm 5557  cres 5559  cima 5560  Fun wfun 6351  wf 6353  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0cc0 10539  ...cfz 12895  ..^cfzo 13036  chash 13693   prefix cpfx 14034  Vtxcvtx 26783  iEdgciedg 26784  Walkscwlks 27380  Trailsctrls 27474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-substr 14005  df-pfx 14035  df-wlks 27383  df-trls 27476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator