MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem4 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem4 28005
Description: Lemma for trlsegvdeg 28009. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem4 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))

Proof of Theorem trlsegvdeglem4
StepHypRef Expression
1 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
21dmeqd 5777 . 2 (𝜑 → dom (iEdg‘𝑋) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3 dmres 5878 . 2 dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)
42, 3syl6eq 2875 1 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  cin 3938  {csn 4570  cop 4576   class class class wbr 5069  dom cdm 5558  cres 5560  cima 5561  Fun wfun 6352  cfv 6358  (class class class)co 7159  0cc0 10540  ...cfz 12895  ..^cfzo 13036  chash 13693  Vtxcvtx 26784  iEdgciedg 26785  Trailsctrls 27475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-dm 5568  df-res 5570
This theorem is referenced by:  trlsegvdeglem6  28007  trlsegvdeg  28009
  Copyright terms: Public domain W3C validator